A Tensor-Based Method for Geosensor Data Forecasting | SpringerLink
Skip to main content

A Tensor-Based Method for Geosensor Data Forecasting

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10988))

  • 1609 Accesses

Abstract

In recent years, geosensor data forecasting has received considerable attention. However, the presence of correlation (i.e. spatial correlation across several sites and time correlation within each site) poses difficulties to accurate forecasting. In this paper, a tensor-based method for geosensor data forecasting is proposed. Specifically, a tensor pattern is first introduced into modelling the geosensor data, which can take advantage of geosensor spatial-temporal information and preserve the multi-way nature of geosensor data, and then a tensor decomposition based algorithm is developed to forecast future values of time series. The proposed approach not only combines and utilizes the multi-mode correlations, but also well extracts the underlying factors in each mode of tensor and mines the multi-dimensional structures of geosensor data. Experimental evaluations on real world geosensor data validate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio temporally correlated time series using Markov models. PVLDB 6(9), 769–780 (2013)

    Google Scholar 

  2. Yu, R., Cheng, D., Liu, Y.: Accelerated online low rank tensor learning for multivariate spatiotemporal streams. ICML 2015, 238–247 (2015)

    Google Scholar 

  3. Sun, Y., Yuan, N.J., Wang, Y., et al.: Collaborative intent prediction with real-time contextual data. ACM Trans. Inf. Syst. 35(4), 30 (2017)

    Article  Google Scholar 

  4. Pravilovic, S., Appice, A., Malerba, D.: An intelligent technique for forecasting spatially correlated time series. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 457–468. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03524-6_39

    Chapter  Google Scholar 

  5. Pravilovic, S., Appice, A., Malerba, D.: Integrating cluster analysis to the ARIMA model for forecasting geosensor data. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Zbigniew W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 234–243. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_24

    Chapter  Google Scholar 

  6. Pravilovic, S., Bilancia, M., Appice, A., Malerba, D.: Using multiple time series analysis for geosensor data forecasting. Inf. Sci. 380(2017), 31–52 (2017)

    Article  Google Scholar 

  7. Acar, E., Dunlavy, D.M., Kolda, T.G.: Mϕrup, M.: Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106(1), 41–56 (2011)

    Article  Google Scholar 

  8. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  9. Tan, H.C., Feng, G.D., Feng, J.S., Wang, W.H., Zhang, Y.J.: A tensor-based method for missing traffic data completion. Transp. Res. Part C 28, 15–27 (2013)

    Article  Google Scholar 

  10. Egrioglu, E., Yolcu, U., Aladag, C., Bas, E.: Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Procedia – Soc. Behav. Sci. 109(8), 1094–1100 (2014)

    Article  Google Scholar 

  11. Pokrajac, D., Obradovic, Z.: Improved spatial-temporal forecasting through modelling of spatial residuals in recent history. In: SDM, Chicago, IL, USA, 5–7 April 2001, pp. 1–17 (2001)

    Google Scholar 

  12. Kamarianakis, Y., Prastacos, P.: Space–time modeling of traffic flow. Comput. Geosci. 31(2), 119–133 (2005)

    Article  Google Scholar 

  13. Ohashi, O., Torgo, L.: Wind speed forecasting using spatio-temporal indicators. In: ECAI, France, 27–31 August 2012, pp. 975–980 (2012)

    Google Scholar 

  14. Asteriou D., Hall S.: ARIMA models and the box-jenkins methodology. In: Applied Econometrics, 2nd edn., pp. 265–286. Palgrave MacMillan (2011)

    Google Scholar 

  15. Saengseedam, P., Kantanantha, N.: Spatio-temporal model for crop yield forecasting. J. Appl. Stat. 44(3), 427–440 (2017)

    Article  MathSciNet  Google Scholar 

  16. Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. In: Harris, C.W. (ed.) Problems in Measuring Change, pp. 122–137. University of Wisconsin Press (1963)

    Google Scholar 

  17. Kiers, H.A.: Towards a standardized notation and terminology in multiway analysis. J. Chemom. 14(3), 105–122 (2000)

    Article  Google Scholar 

  18. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (61762090, 61262069, 61472346, and 61662086), The Natural Science Foundation of Yunnan Province (2016FA026, 2015FB114), the Project of Innovative Research Team of Yunnan Province, and Program for Innovation Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, L., Du, G., Xiao, Q., Wang, L. (2018). A Tensor-Based Method for Geosensor Data Forecasting. In: Cai, Y., Ishikawa, Y., Xu, J. (eds) Web and Big Data. APWeb-WAIM 2018. Lecture Notes in Computer Science(), vol 10988. Springer, Cham. https://doi.org/10.1007/978-3-319-96893-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96893-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96892-6

  • Online ISBN: 978-3-319-96893-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics