Recovering Segmentation Errors in Handwriting Recognition Systems | SpringerLink
Skip to main content

Recovering Segmentation Errors in Handwriting Recognition Systems

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Included in the following conference series:

  • 2248 Accesses

Abstract

Most handwriting recognition systems need a mechanism for handling classification errors. These errors are typically caused by the large shape variability of the handwriting produced by different writers and by the segmentation errors, which occur when the word recognition process is performed by extracting and classifying single characters. In this paper, in order to reduce the segmentation errors, we propose a hierarchical recognition system composed of two classification modules. The first one discriminates isolated characters from cursive fragments using specifically devised features. The second one is an OCR engine that receives as input only those samples classified as isolated characters in the previous module. The whole system works like a highly reliable OCR that rejects most of the cursive fragments avoiding their incorrect classification. The experimental results confirmed the effectiveness of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12125
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15157
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  2. Chow, C.: On optimum recognition error and reject trade of. IEEE Trans. Inf. Theor. 16(1), 41–46 (2006)

    Article  Google Scholar 

  3. Cordella, L.P., De Stefano, C., Fontanella, F., Scotto di Freca, A.: A weighted majority vote strategy using bayesian networks. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS, vol. 8157, pp. 219–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41184-7_23

    Chapter  Google Scholar 

  4. De Stefano, C., Fontanella, F., Marcelli, A., Parziale, A., Scotto di Freca, A.: Rejecting both segmentation and classification errors in handwritten form processing. In: Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR, pp. 569–574, September 2014

    Google Scholar 

  5. De Stefano, C., Fontanella, F., Marrocco, C., Scotta di Freca, A.: A hybrid evolutionary algorithm for bayesian networks learning: an application to classifier combination. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2010, Part I. LNCS, vol. 6024, pp. 221–230. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12239-2_23

    Chapter  Google Scholar 

  6. De Stefano, C., Fontanella, F., Scotto di Freca, A.: A novel naive bayes voting strategy for combining classifiers. In: Proceedings of International Workshop on Frontiers in Handwriting Recognition, IWFHR, pp. 467–472 (2012)

    Google Scholar 

  7. De Stefano, C., Sansone, C., Vento, M.: To reject or not to reject: that is the question-an answer in case of neural classifiers. IEEE Trans. Syst. Man Cyber. Part C 30(1), 84–94 (2000)

    Article  Google Scholar 

  8. De Stefano, C., Fontanella, F., Maniaci, M., Scotto di Freca, A.: A method for scribe distinction in medieval manuscripts using page layout features. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 393–402. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24085-0_41

    Chapter  Google Scholar 

  9. Fumera, G., Roli, F., Giacinto, G.: Reject option with multiple thresholds. Pattern Recognit. 33, 2099–2101 (2000)

    Article  Google Scholar 

  10. Hall, M.: Correlation-based feature selection for machine learning. Ph.D. thesis. University of Waikato (1999)

    Google Scholar 

  11. Hanczar, B., Dougherty, E.R.: Classification with reject option in gene expression data. Bioinformatics 24(17), 1889–1895 (2008)

    Article  Google Scholar 

  12. Koerich, A.: Rejection strategies for handwritten word recognitions. In: IWFHR-9, pp. 479–484. IEEE Computer Society Press (2004)

    Google Scholar 

  13. Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  14. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.: Automatic recognition of handwritten numerical strings: a recognition and verification strategy. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1438–1454 (2002)

    Article  Google Scholar 

  15. Landgrebe, T., Tax, D.M.J., Paclk, P., Duin, R.P.W.: The interaction between classification and reject performance for distance-based reject-option classifiers. Pattern Recognit. Lett. 27(8), 908–917 (2006)

    Article  Google Scholar 

  16. Liu, H., Setiono, R.: Chi2: feature selection and discretization of numeric attributes. In: ICTAI, pp. 88–91. IEEE Computer Society (1995)

    Google Scholar 

  17. Plamondon, R., Srihari, S.: On-line and o-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)

    Article  Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann, Los Altos (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fontanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Stefano, C., Fontanella, F., Marcelli, A., Parziale, A., Scotto di Freca, A. (2018). Recovering Segmentation Errors in Handwriting Recognition Systems. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics