Abstract
Identification of the residues in protein-protein interaction sites has an important impact in a lot of biological problems. We propose an extra-trees method to identify protein interaction sites in hetero-complexes by combing profile and hydrophobic information based on extra-trees. The efficiency and the effectiveness of our proposed approach are verified by its better prediction performance compared with other methods. The experiment is performed on the 1250 non-redundant protein chains. Without using any structure data, we only use profile and a binary profile hydrophobic attribute as input vectors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Clackson, T., Wells, J.A.: A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995)
Chothia, C., Janin, J.: Principles of protein-protein recognition. Nature 256(5520), 705 (1975)
Kortemme, T., Baker, D.: A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. U.S.A. 99, 14116–14121 (2002)
Keskin, O., Ma, B., Nussinov, R.: Hot regions in protein-protein interactions: The organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345, 1281–1294 (2005)
Chelliah, V., Chen, L., Blundell, T.L., Lovell, S.C.: Distinguishing structural and functional restraints in evolution in order to identify interaction sites. J. Mol. Biol. 342, 1487–1504 (2004)
Williams, N.E.: Immunoprecipitation procedures. Meth. Cell Biol. 62, 449–453 (1999)
Wells, J.A.: Systematic mutational analyses of protein-protein interfaces. Meth. Enzymol. 202, 390–411 (1991)
Fernandezrecio, J.: Prediction of protein binding sites and hot spots. Wiley Interdisc. Rev. Comput. Mol. Sci. 1(5), 680–698 (2011)
Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J.C., Deane, C.M.: Progress and challenges in predicting protein interfaces. Brief Bioinf. 17, 117–131 (2016)
Lise, S., Buchan, D., Pontil, M., Jones, D.T.: Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS ONE 6, e16774 (2011)
Lise, S., Archambeau, C., Pontil, M., Jones, D.T.: Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinf. 10, 365 (2009)
Wang, L., Liu, Z.P., Zhang, X.S., Chen, L.: Prediction of hot spots in protein inter faces using a random forest model with hybrid features. Protein Eng. Des. Sel. 25, 119–126 (2012)
Wang, B., Chen, P., Zhang, J.: Protein interface residues prediction based on amino acid properties only. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840, pp. 448–452. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24553-4_59
Chen, P., Wong, L., Li, J.: Detection of outlier residues for improving interface pre diction in protein heterocomplexes. IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 1155–1165 (2012)
Wang, B., Huang, D.S., Jiang, C.: A new strategy for protein interface identification using manifold learning method. IEEE Trans. Nanobiosci. 13(2), 118–123 (2014)
Chen, H., Zhou, H.: Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins 61, 21–26 (2005)
Wang, B., Chen, P., Zhang, J., et al.: Inferring protein-protein interactions using a hybrid genetic algorithm/support vector machine method. Protein Pept. Lett. 17(9), 1079 (2010)
Bystroff, C., Krogh, A.: Hidden Markov models for prediction of protein features. In: Zaki, M.J., Bystroff, C. (eds.) Protein Structure Prediction. Methods in Molecular Biology, vol. 413, pp. 173–198. Humana Press, Totowa (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Peng, L., Chen, F., Zhou, N., Chen, P., Zhang, J., Wang, B. (2018). Prediction of Protein-Protein Interaction Sites Combing Sequence Profile and Hydrophobic Information. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_70
Download citation
DOI: https://doi.org/10.1007/978-3-319-95930-6_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95929-0
Online ISBN: 978-3-319-95930-6
eBook Packages: Computer ScienceComputer Science (R0)