Abstract
This paper presents the implementation of a 3D virtual simulator that allows the analysis of the performance of different autonomous and tele-operated control strategies through the execution of service tasks by an aerial manipulator robot. The simulation environment is development through the digitalization of a real environment by means of 3D mapping with Drones that serves as a scenario to execute the tasks with a robot designed in CAD software. For robot-environment interaction, the Unity 3D graphics engine is used, which exchanges information with MATLAB to close the control loop and allow for feedback to compensate for the error. Finally, the results of the simulation, which validate the proposed control strategies, are presented and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andaluz, Víctor H., et al.: Robust control with dynamic compensation for human-wheelchair system. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds.) ICIRA 2014. LNCS (LNAI), vol. 8917, pp. 376–389. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13966-1_37
Jayawardena, C., Kuo., Unger, I., Igic, A., Wong, R., Watson, C., Stafford, R., Broadbent, E., Tiwari, P., Warren, J., Sohn, J., MacDonald, B.: Deployment of a service robot to help older people. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)
Andaluz, Víctor H., Ortiz, Jessica S., Sanchéz, Jorge S.: Bilateral control of a robotic arm through brain signals. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 355–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22888-4_26
Doriya, R., Chakraborty, P., Nandi, G.: Robotic services in cloud computing paradigm. In: 2012 International Symposium on Cloud and Services Computing (2012)
Pillajo, C.: Calculation of SCARA manipulator optimal path subject to constraints. In: II International Congress of Engineering Mechatronics and Automation (2013)
Naldi, R., Gentili, L., Marconi, L.: Modeling and control of the interaction between flying robots and the environment. IFAC Proc. Vol. 43(14), 975–980 (2010)
Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)
Orsag, M., Korpela, C., Bogdan, S.: Valve turning using a dual-arm aerial manipulator. In: Unmanned Aircraft Systems (ICUAS), vol. 2014(1), pp. 1–7 (2014)
Tsukagoshi, H., Watanabe, M., Hamada, T., Ashlih, D., Iizuka, R.: Aerial manipulator with perching and door-opening capability. Robot. Autom. (ICRA) 2015(1), 4663–4668 (2015)
Marconi, L., Basile, F., Caprari, G., Carloni, R., Chiacchio, P., Hurzeler, C., Lippiello, V., Naldi, R., Nikolic, J., Siciliano, B., Stramigioli, S., Zwicker, E.: Aerial service robotics: the AIRobots perspective. In: 2nd International Conference on Applied Robotics for the Power Industry CARPI (2012)
Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A.Q., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)
Albers, A., Trautmann, S., Howard, T., Nguyen, T.A., Frietsch, M., Sauter, C.: Semi-autonomous flying robot for physical interaction with environment. In: IEEE Conference on Robotics, Automation and Mechatronics (2010)
Guerrero-Sanchez, M., Abaunza, H., Castillo, P., Lozano, R., Garcia-Beltran, C., Rodriguez-Palacios, A.: Passivity-based control for a micro air vehicle using unit quaternions. Appl. Sci. 7(1), 13 (2016)
Ortiz, Jessica S., et al.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_11
Andaluz, Víctor H., et al.: Modeling and control of a wheelchair considering center of mass lateral displacements. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds.) ICIRA 2015. LNCS (LNAI), vol. 9246, pp. 254–270. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22873-0_23
Wang, S., Mao, Z., Zeng, C., Gong, H., Li, S., Chen, B.: A new method of virtual reality based on Unity3D. In: 8th International Conference on Geoinformatics (2010)
Oliveira, M., Pereira, N., Oliveira, E., Almeida, J. E., Rossetti, R.J.: A multi-player approach in serious games: testing pedestrian fire evacuation scenarios. In: Oporto, DSIE15, January 2008
Indraprastha, A., Shinozaki, M.: The investigation on using Unity3D game engine in urban de-signstudy. J. ICT Res. Appl. 3(1), 1–18 (2009)
Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3d reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), vol. 2011(1), pp. 1–6 (2011)
Flores, D.A., Saito, C., Paredes, J.A., Trujillano, F.: Aerial photography for 3D reconstruction in the Peruvian Highlands through a fixed-wing UAV system. In: Mechatronics (ICM), vol. 2017(1), pp. 1–7 (2017)
Kurnaz, S., Cetin, O., Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles (2018)
Sorton, E., Hammaker, S.: simulated flight testing of an autonomous unmanned aerial vehicle using FlightGear (2018)
Kurnaz, S., Cetin, O., Kaynak, O.: Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles. J. Intell. Robot. Syst. 54, 229–244 (2018)
Psirofonia, P., Samaritakis, V., Eliopoulos, P., Potamitis, I.: Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies (2018)
Trujano, G.B.R.R.F., Chan, B., Beams, G., Rivera, R.: Security Analysis of DJI Phantom 3Standard (2016)
Gerkey, B.P., Vaughan, R.T., Howard, A.: Tools for multi-robot and distributed sensor systems. In: Proceedings of the International Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal, pp. 317–323, 30 June–3 July 2003
Figueroa, R., Müller-Karger, C.: Effort analysis by the finite element method in the artificial foot design process. In: IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health, pp. 732–735 (2007)
Xu, Y., Hoa, S.: Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68(3–4), 854–861 (2008)
Acknowledgements
The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Carvajal, C.P., Méndez, M.G., Torres, D.C., Terán, C., Arteaga, O.B., Andaluz, V.H. (2018). Autonomous and Tele-Operated Navigation of Aerial Manipulator Robots in Digitalized Virtual Environments. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-95282-6_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95281-9
Online ISBN: 978-3-319-95282-6
eBook Packages: Computer ScienceComputer Science (R0)