Autonomous and Tele-Operated Navigation of Aerial Manipulator Robots in Digitalized Virtual Environments | SpringerLink
Skip to main content

Autonomous and Tele-Operated Navigation of Aerial Manipulator Robots in Digitalized Virtual Environments

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Abstract

This paper presents the implementation of a 3D virtual simulator that allows the analysis of the performance of different autonomous and tele-operated control strategies through the execution of service tasks by an aerial manipulator robot. The simulation environment is development through the digitalization of a real environment by means of 3D mapping with Drones that serves as a scenario to execute the tasks with a robot designed in CAD software. For robot-environment interaction, the Unity 3D graphics engine is used, which exchanges information with MATLAB to close the control loop and allow for feedback to compensate for the error. Finally, the results of the simulation, which validate the proposed control strategies, are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andaluz, Víctor H., et al.: Robust control with dynamic compensation for human-wheelchair system. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds.) ICIRA 2014. LNCS (LNAI), vol. 8917, pp. 376–389. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13966-1_37

    Chapter  Google Scholar 

  2. Jayawardena, C., Kuo., Unger, I., Igic, A., Wong, R., Watson, C., Stafford, R., Broadbent, E., Tiwari, P., Warren, J., Sohn, J., MacDonald, B.: Deployment of a service robot to help older people. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

    Google Scholar 

  3. Andaluz, Víctor H., Ortiz, Jessica S., Sanchéz, Jorge S.: Bilateral control of a robotic arm through brain signals. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 355–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22888-4_26

    Chapter  Google Scholar 

  4. Doriya, R., Chakraborty, P., Nandi, G.: Robotic services in cloud computing paradigm. In: 2012 International Symposium on Cloud and Services Computing (2012)

    Google Scholar 

  5. Pillajo, C.: Calculation of SCARA manipulator optimal path subject to constraints. In: II International Congress of Engineering Mechatronics and Automation (2013)

    Google Scholar 

  6. Naldi, R., Gentili, L., Marconi, L.: Modeling and control of the interaction between flying robots and the environment. IFAC Proc. Vol. 43(14), 975–980 (2010)

    Article  Google Scholar 

  7. Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)

    Article  Google Scholar 

  8. Orsag, M., Korpela, C., Bogdan, S.: Valve turning using a dual-arm aerial manipulator. In: Unmanned Aircraft Systems (ICUAS), vol. 2014(1), pp. 1–7 (2014)

    Google Scholar 

  9. Tsukagoshi, H., Watanabe, M., Hamada, T., Ashlih, D., Iizuka, R.: Aerial manipulator with perching and door-opening capability. Robot. Autom. (ICRA) 2015(1), 4663–4668 (2015)

    Google Scholar 

  10. Marconi, L., Basile, F., Caprari, G., Carloni, R., Chiacchio, P., Hurzeler, C., Lippiello, V., Naldi, R., Nikolic, J., Siciliano, B., Stramigioli, S., Zwicker, E.: Aerial service robotics: the AIRobots perspective. In: 2nd International Conference on Applied Robotics for the Power Industry CARPI (2012)

    Google Scholar 

  11. Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A.Q., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)

    Article  Google Scholar 

  12. Albers, A., Trautmann, S., Howard, T., Nguyen, T.A., Frietsch, M., Sauter, C.: Semi-autonomous flying robot for physical interaction with environment. In: IEEE Conference on Robotics, Automation and Mechatronics (2010)

    Google Scholar 

  13. Guerrero-Sanchez, M., Abaunza, H., Castillo, P., Lozano, R., Garcia-Beltran, C., Rodriguez-Palacios, A.: Passivity-based control for a micro air vehicle using unit quaternions. Appl. Sci. 7(1), 13 (2016)

    Article  Google Scholar 

  14. Ortiz, Jessica S., et al.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_11

    Chapter  Google Scholar 

  15. Andaluz, Víctor H., et al.: Modeling and control of a wheelchair considering center of mass lateral displacements. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds.) ICIRA 2015. LNCS (LNAI), vol. 9246, pp. 254–270. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22873-0_23

    Chapter  Google Scholar 

  16. Wang, S., Mao, Z., Zeng, C., Gong, H., Li, S., Chen, B.: A new method of virtual reality based on Unity3D. In: 8th International Conference on Geoinformatics (2010)

    Google Scholar 

  17. Oliveira, M., Pereira, N., Oliveira, E., Almeida, J. E., Rossetti, R.J.: A multi-player approach in serious games: testing pedestrian fire evacuation scenarios. In: Oporto, DSIE15, January 2008

    Google Scholar 

  18. Indraprastha, A., Shinozaki, M.: The investigation on using Unity3D game engine in urban de-signstudy. J. ICT Res. Appl. 3(1), 1–18 (2009)

    Google Scholar 

  19. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3d reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), vol. 2011(1), pp. 1–6 (2011)

    Google Scholar 

  20. Flores, D.A., Saito, C., Paredes, J.A., Trujillano, F.: Aerial photography for 3D reconstruction in the Peruvian Highlands through a fixed-wing UAV system. In: Mechatronics (ICM), vol. 2017(1), pp. 1–7 (2017)

    Google Scholar 

  21. Kurnaz, S., Cetin, O., Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles (2018)

    Google Scholar 

  22. Sorton, E., Hammaker, S.: simulated flight testing of an autonomous unmanned aerial vehicle using FlightGear (2018)

    Google Scholar 

  23. Kurnaz, S., Cetin, O., Kaynak, O.: Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles. J. Intell. Robot. Syst. 54, 229–244 (2018)

    Article  Google Scholar 

  24. Psirofonia, P., Samaritakis, V., Eliopoulos, P., Potamitis, I.: Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies (2018)

    Google Scholar 

  25. Trujano, G.B.R.R.F., Chan, B., Beams, G., Rivera, R.: Security Analysis of DJI Phantom 3Standard (2016)

    Google Scholar 

  26. Gerkey, B.P., Vaughan, R.T., Howard, A.: Tools for multi-robot and distributed sensor systems. In: Proceedings of the International Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal, pp. 317–323, 30 June–3 July 2003

    Google Scholar 

  27. Figueroa, R., Müller-Karger, C.: Effort analysis by the finite element method in the artificial foot design process. In: IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health, pp. 732–735 (2007)

    Chapter  Google Scholar 

  28. Xu, Y., Hoa, S.: Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68(3–4), 854–861 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian P. Carvajal , María G. Méndez , Diana C. Torres , Cochise Terán , Oscar B. Arteaga or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carvajal, C.P., Méndez, M.G., Torres, D.C., Terán, C., Arteaga, O.B., Andaluz, V.H. (2018). Autonomous and Tele-Operated Navigation of Aerial Manipulator Robots in Digitalized Virtual Environments. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics