Abstract
The visualization of tele-operated and autonomous executions in the field becomes difficult if the real environments are located in remote areas or present potential dangers for visualizing clients. This work proposes an application based on virtual reality to recreate in real time the execution tasks of a UAV, which is operated remotely or autonomously on a real environment. To achieve a third level of immersion, the reconstruction of the real environment where the field tests are executed is considered, offering the possibility of knowing the real scenario where the tests are executed. The consideration of using commercial UAV development kits is taken into account to obtain internal information, as well as to control the drone from client devices. The results presented validate the unification of 3D models and the reconstruction of the environment, as well as the consumption of vehicle information and climate parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nat. Int. J. Sci. 521(1), 460–466 (2015)
Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design challenges of drones: a review. Prog. Aerosp. Sci. 91(1), 99–131 (2017)
Câmara, D.: Cavalry to the rescue: drones fleet to help rescuers operations over disasters scenarios. In: Antenna Measurements & Applications (CAMA), vol. 2015(1) (2015)
Andaluz, V.H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_43
Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: a survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.) Progress in Systems Engineering. AISC, vol. 366, pp. 449–454. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-08422-0_66
Daftry, S., Hoppe, C., Bischof, H.: Building with drones: accurate 3D facade reconstruction using MAVs. In: Robotics and Automation (ICRA), vol. 2015, no. 1, pp. 3487–3494 (2015)
Balletti, C., Guerra, F., Scocca, V., Gottardi, C.: 3D integrated methodologies for the documentation and the virtual reconstruction of an archaeological site. Digit. Heritage 5(1), 215–222 (2015)
Francesco, N., Fabio, R.: UAV for 3D mapping applications: a review. Appl. Geomat. 6(1), 1–15 (2014)
Sarkar, A., Patel, K.A., Ram, R.G., Capoor, G.K.: Gesture control of drone using a motion controller. In: Industrial Informatics and Computer Systems (CIICS), vol. 2016(1), pp. 1–5 (2016)
Andaluz, V.H., Chicaiza, F.A., Meythaler, A., Rivas, D.R., Chuchico, C.P.: Construction of a quadcopter for autonomous and teleoperated navigation. In: Design of Circuits and Integrated Systems (DCIS), vol. 2015(1), pp. 1–7 (2015)
Andaluz, V.H., Quevedo, W.X., Chicaiza, F.A., Varela, J., Gallardo, C., Sánchez, J.S., Arteaga, O.: Transparency of a bilateral tele-operation scheme of a mobile manipulator robot. In: Augmented Reality, Virtual Reality, and Computer Graphics, vol. 9768, no. 1, pp. 228–245 (2016)
Kothari, M., Postlethwaite, I., Gu, D.-W.: UAV path following in windy urban environments. J. Intell. Robot. Syst. 74(3–4), 1013–1028 (2014)
Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 27(3), 311–334 (2010)
Cai, G., Chen, B.M., Dong, X., Lee, T.H.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21(5), 803–820 (2011)
Acknowledgments
The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this paper.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Chicaiza, F.A. et al. (2018). Real–Time Virtual Reality Visualizer for Unmanned Aerial Vehicles. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-95282-6_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95281-9
Online ISBN: 978-3-319-95282-6
eBook Packages: Computer ScienceComputer Science (R0)