Calibration of CLAIR Model by Means of Sentinel-2 LAI Data for Analysing Wheat Crops Through Landsat-8 Surface Reflectance Data | SpringerLink
Skip to main content

Calibration of CLAIR Model by Means of Sentinel-2 LAI Data for Analysing Wheat Crops Through Landsat-8 Surface Reflectance Data

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10964))

Included in the following conference series:

Abstract

This study proposes a method to calibrate the semi-empirical CLAIR model, a simplified reflectance model used to estimate the Leaf Area Index (LAI) from optical data, using Landsat-8 Operational Land Imager Surface Reflectance (OLISR) data over wheat cultivation areas.

The procedure can be applied lacking both LAI field measurements and surface reflectance (SR) data by exploiting free of charge data, as the novel high-level Landsat8 OLISR and the Sentinel-2 LAI (S2 LAI) products. This last dataset was used as LAI reference at field size scale. Once calibrated, the model generates LAI information from OLISR data consistent with the S2 LAI. In this way it is possible merge the two products to obtain a finer temporal resolution LAI estimation during all the crop seasons.

The method was tested and statistically assessed on three different wheat test fields located in the Capitanata area (Apulia region, Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J.M., Black, T.A.: Defining leaf area index for non-flat leaves. Plant, Cell Environ. 15(4), 421–429 (1992)

    Article  Google Scholar 

  2. Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space–time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 187, 1–15 (2015)

    Article  Google Scholar 

  3. Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., Escadafal, R., Ezzahar, J., Hoedjes, J.C.B., Kharrou, M.H.: Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 79(1), 1–27 (2006)

    Article  Google Scholar 

  4. Vanino, S., Nino, P., De Michele, C., Bolognesi, S.F., Pulighe, G.: Earth observation for improving irrigation water management: a case-study from Apulia Region in Italy. Agric. Agric. Sci. Procedia 4, 99–107 (2015)

    Article  Google Scholar 

  5. Trombetta, A., Iacobellis, V., Tarantino, E., Gentile, F.: Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric. Water Manag. 164(2), 304–316 (2016)

    Article  Google Scholar 

  6. Bréda, N.J.J.: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot. 54(392), 2403–2417 (2003)

    Article  Google Scholar 

  7. Martinez, B., Cassiraga, E., Camacho, F., Garcia-Haro, J.: Geostatistics for mapping leaf area index over a cropland landscape: efficiency sampling assessment. Remote Sens. 2(11), 2584–2606 (2010)

    Article  Google Scholar 

  8. Richter, K., Vuolo, F., D’Urso, G., Dini, L.: Evaluation of different methods for the retrieval of LAI using high resolution airborne data. In: The International Society for Optical Engineering Proceedings of SPIE. Society of Photo-Optical Instrumentation Engineers (2007)

    Google Scholar 

  9. Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G., Camps-Valls, G., Moreno, J.: Experimental sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods–a comparison. ISPRS J. Photogram. Remote Sens. 108, 260–272 (2015)

    Article  Google Scholar 

  10. Clevers, J.G.P.W.: Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 29(1), 25–37 (1989)

    Article  Google Scholar 

  11. Clevers, J.G.P.W., Vonder, O.W., Jongschaap, R.E.E., Desprats, J.F., King, C., Prévot, L., Bruguier, N.: A semi-empirical approach for estimating plant parameters within the RESEDA-project. In: International Archives of Photogrammetry and Remote Sensing 33(B7/1; PART 7), pp. 272–279 (2000)

    Google Scholar 

  12. Vuolo, F., Dini, L., D’Urso, G.: Assessment of LAI retrieval accuracy by inverting a RT model and a simple empirical model with multiangular and hyperspectral CHRIS/PROBA data from SPARC. In: Proceedings 3rd CHRIS/Proba Workshop (2005)

    Google Scholar 

  13. Akdim, N., Alfieri, S.M., Habib, A., Choukri, A., Cheruiyot, E., Labbassi, K., Menenti, M.: Monitoring of irrigation schemes by remote sensing: phenology versus retrieval of biophysical variables. Remote Sens. 6(6), 5815 (2014)

    Article  Google Scholar 

  14. Vanino, S., Pulighe, G., Nino, P., De Michele, C., Bolognesi, S.F., D’Urso, G.: Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens. 7(11), 14708–14730 (2015)

    Article  Google Scholar 

  15. Clevers, J., Vonder, O., Jongschaap, R., Desprats, J.F., King, C., Prévot, L., Bruguier, N.: Using SPOT data for calibrating a wheat growth model under mediterranean conditions. Agronomie 22(6), 687–694 (2002)

    Article  Google Scholar 

  16. Clevers, J.G.P.W.: The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sens. Environ. 25(1), 53–69 (1988)

    Article  Google Scholar 

  17. Baret, F., Jacquemoud, S., Hanocq, J.F.: The soil line concept in remote sensing. Remote Sens. Rev. 7(1), 65–82 (1993)

    Article  Google Scholar 

  18. Vuolo, F., Neugebauer, N., Bolognesi, S.F., Atzberger, C., D’Urso, G.: Estimation of leaf area index using DEIMOS-1 data: application and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 5(3), 1274–1291 (2013)

    Article  Google Scholar 

  19. Clevers, J.G.P.W.: Application of the WDVI in estimating LAI at the generative stage of barley. ISPRS J. Photogram. Remote Sens. 46(1), 37–47 (1991)

    Article  Google Scholar 

  20. Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016)

    Article  Google Scholar 

  21. Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R.: Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)

    Article  Google Scholar 

  22. Drusch, M., et al.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012)

    Article  Google Scholar 

  23. Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., Gascon, F.: Sentinel-2 Sen2Cor: L2A processor for users. In: Proceedings Living Planet Symposium 2016, pp. 1–8. Spacebooks Online (2016)

    Google Scholar 

  24. Jacquemoud, S., et al.: PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens. Environ. 113, S56–S66 (2009)

    Article  Google Scholar 

  25. Yoshioka, H., Miura, T., Demattê, J.A., Batchily, K., Huete, A.R.: Soil line influences on two-band vegetation indices and vegetation isolines: a numerical study. Remote Sens. 2(2), 545–561 (2010)

    Article  Google Scholar 

  26. Aquilino M., Novelli A., Tarantino E., Gentile F., Iacobellis V.: Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. Remote Sensing for Agriculture Ecosystems and Hydrology (2014)

    Google Scholar 

  27. Peschechera, G., Novelli, A., Caradonna, G., Fratino, U.: Calibration of the CLAIR model by using Landsat 8 surface reflectance higher-level data and MODIS leaf area index products. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 16–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_2

    Chapter  Google Scholar 

  28. Gao, F., Anderson, M.C., Kustas, W.P., Wang, Y.: Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference. J. Appl. Remote Sens. 6(1), 063554 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Fratino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peschechera, G., Fratino, U. (2018). Calibration of CLAIR Model by Means of Sentinel-2 LAI Data for Analysing Wheat Crops Through Landsat-8 Surface Reflectance Data. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10964. Springer, Cham. https://doi.org/10.1007/978-3-319-95174-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95174-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95173-7

  • Online ISBN: 978-3-319-95174-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics