Rockfall Source Areas Assessment in an Area of the Pollino National Park (Southern Italy) | SpringerLink
Skip to main content

Rockfall Source Areas Assessment in an Area of the Pollino National Park (Southern Italy)

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10962))

Included in the following conference series:

Abstract

In the mountainous areas, rockfalls are a common type of massmovements that represents a major cause of fatalities and damages to properties because of their high energy and mobility. For this reason, the assessment of rockfall hazard and risk constitutes an important issue for technicians, administrators and local planners and requires reliable methods, in order to assure a proper land management.

This paper is an attempt to assess rockfall susceptibility; in particular, the attention has been focused on the potential rockfall source areas assessment in the territory of the twenty-four Lucanian municipalities belonging to the Pollino National Park (Southern Italy).

A DEM-based approach has been used, according to the Slope Angle Distribution (SAD) procedure, allowing to identify the most important Morphological Units of the topography: Cliffs, Steep Slopes, Foot Slopes and Plains. A terrain unit (usually a grid cell) is considered as potential rockfall source when its slope angle lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit “Cliffs” become dominant over the one of “Steep slopes”.

The software Histofit [31] has been a very useful tool for the assessment of rockfall susceptibility.

The results of the application of this approach have been compared with the rockfalls niches observed on the field in order to validate the method. Finally, the influence of the cell size of the DEM has been inspected by applying the methodology over two different DEM resolutions (5 m and 20 m).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azzoni, A., La Barbera, G., Zaninetti, A.: Analysis and prediction of rockfalls using a mathematical model. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32, 709–724 (1995)

    Article  Google Scholar 

  2. Baillifard, F., Jaboyedoff, M., Sartori, M.: Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. Nat. Hazards Earth Syst. Sci. 3, 435–442 (2003). https://doi.org/10.5194/nhess-3-435-2003

    Article  Google Scholar 

  3. Bozzolo, D., Pamini, R.: Simulation of rockfalls down a valley site. Acta Mech. 63, 113–130 (1986)

    Article  Google Scholar 

  4. Broili, L.: In situ tests for the study of rock fall. Geologia Applicata e Idrogeologia, 8(1), 105–111 (1973). (in Italian)

    Google Scholar 

  5. Budetta, P., Nappi, M.: Comparison between qualitative rockfall risk rating system for a road affected by high traffic intensity. Nat. Hazards Earth Syst. Sci. 13, 1643 (2013). https://doi.org/10.5194/nhess-13-1643-2013

    Article  Google Scholar 

  6. Cancelli, A., Crosta, G.B.: Hazard and risk assessment in rockfall prone areas. In: Skipp, B.O. (ed.) Risk Reliability in Ground Engineering. Institute of Civil Engineering, Thomas Telford, pp. 177–190 (1993)

    Google Scholar 

  7. Cascini, L.: Applicability of landslide susceptibility and hazard zoning at different scale. Eng. Geol. 102, 164–177 (2008)

    Article  Google Scholar 

  8. Crosta, G.B., Agliardi, F.: A new methodology for physically based rockfall hazard assessment. Nat. Hazards Earth Syst. Sci. 3, 407–422 (2003)

    Article  Google Scholar 

  9. Derron, M.H., Jaboyedoff, M., Blikra, L.H.: Preliminary assessment of rockslide and rockfall hazards using a DEM (Oppstadhornet, Norway). Nat. Hazards Earth Syst. Sci. 5, 285–292 (2005)

    Article  Google Scholar 

  10. Ellen, S.D.: Description and mechanics of soil slip/debris flows in the storm. In: Ellen, S.D., Wieczorek, G.F. (eds.) Landslides, Floods, and Marine Effects of the storm of January 3–5, 1982, in the San Francisco Bay region, California. U.S. Geological Survey Professional Paper, vol. 1434, pp. 63–112 (1988)

    Google Scholar 

  11. Evans, S.G., Hungr, O.: The assessment of rockfall hazard at the base of talus slopes. Can. Geotech. J. 30, 620–636 (1993)

    Article  Google Scholar 

  12. Frattini, P., Crosta, G., Carrara, A., Agliardi, F.: Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3–4), 419–437 (2008)

    Article  Google Scholar 

  13. Gullà, G., Sdao, F.: Dissesti prodotti o aggravati dal sisma del 9 settembre 1998 nei territori del confine calabro-lucano. Monografia del Gruppo Nazionale Difesa Catastrofi Idrogeologiche, U.O. 2.56 CNR-IRPI – 112 pp, Rubbettino Ed. srl, Soveria Mannelli (CZ). Pubbl. n. 2121 del catalogo pubblicazioni del GNDCI, CNR (2001). (in Italian)

    Google Scholar 

  14. Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P.: Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31, 181–216 (1999)

    Article  Google Scholar 

  15. Guzzetti, F., Crosta, G., Detti, R., Agliardi, F.: STONE: a computer program for threedimensional simulation of rock-falls. Comput. Geosci. 28(9), 1079–1093 (2002)

    Article  Google Scholar 

  16. Guzzetti, F., Reichenbach, P., Ghigi, S.: Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environ. Manag. 34, 191–208 (2004)

    Article  Google Scholar 

  17. Guzzetti, F., Reichenbach, P., Wieczorek, G.F.: Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat. Hazards Earth Syst. Sci. 3, 491–503 (2003)

    Article  Google Scholar 

  18. Heim, A.: Bergsturz und Menschenleben. Bergsturz und Menschenleben, Fretz and Wasmuth Verlag, Zurich, pp. 218 (1932). (in German)

    Google Scholar 

  19. Hoek, E., Bray, J.W.: Rock Slope Engineering, 3rd edn. Institution of Mining and Metallurgy, London (1981)

    Google Scholar 

  20. Hoek, E., Brown, E.T.: The Hoek–Brown failure criterion -a 1988 update. In: Proceedings of 15th Canadian Rock Mechanics Symposium, Civil Engineering Department, University of Toronto, Toronto, Canada, pp. 31–38 (1988)

    Google Scholar 

  21. IFFI project (Inventory of Landslide Phenomena in Italy), Department of Environment and Energy – Civil Protection and Environmental Control Office of the Basilicata Region (2014)

    Google Scholar 

  22. Jaboyedoff, M., Baillifard, F., Bardou, E., Girod, F.: The effect of weathering on alpine rock instability. Q. J. Eng. Geol. Hydrogeol. 37, 95–103 (2004)

    Article  Google Scholar 

  23. Jaboyedoff, M., Baillifard, F., Philippossian, F., Rouiller, J.D.: Assessing fracture occurrence using “weighted fracturing density”: a step towards estimating rock instability. Nat. Hazards Earth Syst. Sci. 4, 83–93 (2004)

    Article  Google Scholar 

  24. Jaboyedoff, M., Choffet, Ch., Derron, M.H., Horton, P., Loye, A., Longchamp, C., Mazotti, B., Michoud, C., Pedrazzini, A.: Preliminary slope mass movements susceptibility mapping using DEM and LiDAR DEM. In: Pradhan B., Buchroithner M. (eds.) Terrigenous Mass Movement: Detection, Modelling, Early Warning and Mitigation Using Geoinformation Technology, pp. 109–170. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25495-6_5

    Chapter  Google Scholar 

  25. Jaboyedoff, M., Labiouse, V.: Preliminary assessment of rockfall hazard based on GIS data. In: 10th International Congress on Rock Mechanics ISRM 2003 – Technology roadmap for rock mechanism. South Africa Institute of Mining and Metallurgy, Johannesburg, South Africa, pp. 575–578 (2003)

    Google Scholar 

  26. Jaboyedoff, M., Labiouse, V.: Technical note: preliminary estimation of rockfall runout zones. Nat. Hazard Earth Syst. Sci. 11, 819–828 (2011)

    Article  Google Scholar 

  27. Jones, C.L., Higgins, J.D., Andrew, R.D.: Colorado Rockfall Simulation Program Version 4.0. Department of Transportation, Colorado Geological Survey, Colorado, p. 127 (2000)

    Google Scholar 

  28. Kobayashi, Y., Harp, E.L., Kagawa, T.: Simulation of rockfalls triggered by earthquakes. Rock Mech. Rock Eng. 23, 1–20 (1990)

    Article  Google Scholar 

  29. Losasso, L., Derron, M.-H., Horton, P., Jaboyedoff, M., Sdao, F.: Definition and mapping of potential rockfall source and propagation areas at a regional scale in Basilicata region (Southern Italy). Rendiconti Online Società Geologica Italiana 41, 175–178 (2016). https://doi.org/10.3301/ROL.2016.122

    Article  Google Scholar 

  30. Losasso, L., Jaboyedoff, M., Sdao, F.: Potential rock fall source areas identification and rock fall propagation in the province of Potenza territory using an empirically distributed approach. In: Landslides (2017). https://doi.org/10.1007/s10346-017-0807-x

    Article  Google Scholar 

  31. Loye, A., Jaboyedoff, M., Pedrazzini, A.: Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat. Hazards Earth Syst. Sci. 9, 1643–1653 (2009). https://doi.org/10.5194/nhess-9-1643-2009

    Article  Google Scholar 

  32. Matsuoka, N., Sakai, H.: Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28, 309–328 (1999)

    Article  Google Scholar 

  33. Melchiorre, C., Frattini, P.: Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway. Clim. Chang. 113(2), 413–436 (2012)

    Article  Google Scholar 

  34. Montgomery, D.R., Brandon, M.T.: Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 201(3–4), 481–489 (2002)

    Article  Google Scholar 

  35. Oppikofer, T., Jaboyedoff, M., Coe, J.A.: Rockfall hazard at Little Mill Campground, Uinta National Forest: Part 2. DEM analysis. In: First North American Landslide Conference – Landslides and Society: Integrated Science, Engineering, Management, and Mitigation, Vail, USA, 3–8 June 2007, pp. 1351–1361 (2007)

    Google Scholar 

  36. Rouiller, J.D., Jaboyedoff, M., Marro, C., Philippossian, F., Mamin, M.: Pentes instables dans le Pennique Valaisan. Matterock: une méthodologie d’auscultation des falaises et de détection des éboulements majeurs potentiels. Rapport final du PNR31, VDF Hochschulverlag AG, ETH Zürich, Switzerland (1998)

    Google Scholar 

  37. Sdao, F., Sole, A.: Consulenza scientifico-tecnica per la “Valutazione del rischio idrogeologico combinato (frane ed alluvioni) e del relativo grado di esposizione della rete stradale della Provincia di Potenza” – Provincia di Potenza (2013)

    Google Scholar 

  38. Selby, M.J.: Hillslope Materials and Processes, 2nd edn. Oxford University Press, Oxford (1993)

    Google Scholar 

  39. Skempton, A.W., DeLory, F.A.: Stability of natural slopes in London clay. In: Proceedings of the IVth International Conference ISSMFE (Int. Soc. for soilMech. And found. Eng.), Butterworks, London, vol. 2, pp. 378–381 (1957)

    Google Scholar 

  40. Strahler, A.N.: Equilibrium theory of erosional slopes approached by frequency distribution analysis. Am. J. Sci. 248(673–696), 800–814 (1950)

    Article  Google Scholar 

  41. Strahler, A.N.: Quantitative geomorphology of erosional landscapes. In: Comptes Rendus 19th International Geological Congress, Sect. 13, pp. 341–354 (1954)

    Google Scholar 

  42. Varnes, D.J.: Slope movements: types and processes. In: Schuster, R.L., Krizek, R.J. (eds.) Landslide Analysis and Control. Transportation Research Board, Washington, DC, Special Report 176, pp. 11–33 (1978)

    Google Scholar 

  43. Varnes, D.J., IAEG Commission on Landslides and other Mass-Movements: Landslide Hazard Zonation, A Review of Principles and Practice, p. 63. UNESCO Press, Paris (1984)

    Google Scholar 

  44. Whalley, W.B.: Rockfalls. In: Brunsden, D., Prior, D.B. (eds.) Slope Instability, pp. 217–256. Wiley, Chichester (1984)

    Google Scholar 

Download references

Acknowledgement

The study was carried out in the framework of the project Smart Basilicata in Smart Cities and Communities and Social Innovation (MIUR n.84/Ric 2012, PON 2007 – 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Losasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muzzillo, R., Losasso, L., Sdao, F. (2018). Rockfall Source Areas Assessment in an Area of the Pollino National Park (Southern Italy). In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10962. Springer, Cham. https://doi.org/10.1007/978-3-319-95168-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95168-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95167-6

  • Online ISBN: 978-3-319-95168-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics