Software Tool Support for Modular Reasoning in Modal Logics of Actions | SpringerLink
Skip to main content

Software Tool Support for Modular Reasoning in Modal Logics of Actions

  • Conference paper
  • First Online:
Interactive Theorem Proving (ITP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10895))

Included in the following conference series:

  • 934 Accesses

Abstract

We present a software tool for reasoning in and about propositional sequent calculi for modal logics of actions. As an example, we implement the display calculus D.EAK of dynamic epistemic logic. The tool generates embeddings of the calculus in the theorem prover Isabelle/HOL for formalising proofs about D.EAK. Integrating propositional reasoning in D.EAK with inductive reasoning in Isabelle/HOL, we verify the solution of the muddy children puzzle for any number of muddy children. There also is a set of meta-tools that allows us to adapt the software for a wide variety of user defined calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For example, taking into account the correspondence between operational and structural connectives, the rule \((;,>)\) above says precisely that the operation that maps C to \(A\rightarrow C\) is right-adjoint to the operation that maps B to \(A\wedge B\). Similarly, \((>,;)\) expresses that is left adjoint to \(A\vee \_\).

  2. 2.

    which implies that one can derive \(\langle \upalpha \rangle X\vdash [\upalpha ] X\).

  3. 3.

    which implies that one can derive \([\texttt {a}] Y\vdash Y\).

  4. 4.

    Compiled version available for download at: https://github.com/goodlyrottenapple/calculus-toolbox/raw/master/calculi/DEAK.jar.

  5. 5.

    It is at this point where our implementation of the deep embedding is currently tailored towards substructural logics: For each rule r and each sequent s, there is only one list of premises to consider. Generalising the deep embedding to sequent calculi with rules such as (2) would require a modification: If we interpret the structure \(W,X,A\vee B\) in (2) not as a structure (i.e. tree) but as a list, then matching the rule (2) against a sequent would typically not determine the sublists matching W and X in a unique way. More information is available at [3].

  6. 6.

    The presence of the \\ instead of just one \ is unfortunate but \ is a reserved character that needs to be escaped using \.

References

  1. Aucher, G., Schwarzentruber, F.: On the complexity of dynamic epistemic logic. In: Proceedings of the 14th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2013)

    Google Scholar 

  2. Balbiani, P., van Ditmarsch, H., Herzig, A., de Lima, T.: Tableaux for public announcement logic. J. Logic Comput. 20(1), 55–76 (2010)

    Article  MathSciNet  Google Scholar 

  3. Balco, S.: The calculus toolbox. https://goodlyrottenapple.github.io/calculus-toolbox/

  4. Balco, S.: The calculus toolbox 2. https://github.com/goodlyrottenapple/calculus-toolbox-2

  5. Balco, S., Frittella, S.: Muddy children in Isabelle. https://goodlyrottenapple.github.io/muddy-children/

  6. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge and private suspicious. Technical Report SEN-R9922, CWI, Amsterdam (1999)

    Google Scholar 

  7. Belnap, N.: Display logic. J. Philos. Logic 11, 375–417 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Brotherston, J.: Bunched logics displayed. Stud. Logica. 100(6), 1223–1254 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science (LICS 2008)

    Google Scholar 

  11. Ciabattoni, A., Ramanayake, R.: Power and limits of structural display rules. ACM Trans. Comput. Logic (TOCL) 17(3), 17 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ciabattoni, A., Ramanayake, R., Wansing, H.: Hypersequent and display calculi - a unified perspective. Stud. Logica. 102(6), 1245–1294 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dawson, J.E., Goré, R.: Embedding display calculi into logical frameworks: comparing twelf and Isabelle. Electr. Notes Theor. Comput. Sci. 42, 89–103 (2001)

    Article  Google Scholar 

  14. Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic. In: Proceedings of 15th International Conference Theorem Proving in Higher Order Logics, TPHOLs (2002)

    Google Scholar 

  15. Dyckhoff, R., Sadrzadeh, M., Truffaut, J.: Algebra, proof theory and applications for an intuitionistic logic of propositions, actions and adjoint modal operators. ACM Trans. Comput. Logic 14(4), 1–37 (2013)

    Google Scholar 

  16. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. Springer, Netherlands (1983). https://doi.org/10.1007/978-94-017-2794-5

  18. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for propositional dynamic logic. J. Log. Comput. 26(6), 2067–2104 (2016)

    Article  MathSciNet  Google Scholar 

  19. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: Multi-type display calculus for dynamic epistemic logic. J. Log. Comput. 26(6), 2017–2065 (2016)

    Article  MathSciNet  Google Scholar 

  20. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent calculi. In: Andrzej Indrzejczak, M.Z., Kaczmarek, J. (ed.) Trends in Logic XIII, pp. 81–93. Lodź University Press (2014). https://arxiv.org/abs/1609.05343

  21. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquisitive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8_14

    Chapter  MATH  Google Scholar 

  22. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: A proof-theoretic semantic analysis of dynamic epistemic logic. J. Log. Comput. 26(6), 1961–2015 (2016)

    Article  MathSciNet  Google Scholar 

  23. Goré, R.: Substructural logics on display. Logic J. IGPL 6(3), 451–504 (1998)

    Article  MathSciNet  Google Scholar 

  24. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0_6

  25. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Log. Comput. (2016). https://doi.org/10.1093/logcom/exw022

  26. Greco, G., Palmigiano, A.: Linear logic properly displayed. CoRR, abs/1611.04181 (2016)

    Google Scholar 

  27. Greco, G., Palmigiano, A.: Lattice logic properly displayed. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 153–169. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_11

    Chapter  MATH  Google Scholar 

  28. Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus for semi de morgan logic. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 199–215. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_14

    Chapter  MATH  Google Scholar 

  29. Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: a manifesto. In: Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 325–334 (1991)

    Google Scholar 

  30. Kracht, M.: Power and weakness of the modal display calculus. In: Proof Theory of Modal Logic, pp. 93–121. Kluwer, Netherlands (1996)

    Google Scholar 

  31. Lescanne, P.: Mechanizing common knowledge logic using COQ. Ann. Math. Artif. Intell. 48(1–2), 15–43 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Lescanne, P.: Common knowledge logic in a higher order proof assistant. In: Programming Logics - Essays in Memory of Harald Ganzinger, pp. 271–284 (2013)

    Google Scholar 

  33. Lescanne, P., Puisségur, J.: Dynamic logic of common knowledge in a proof assistant. CoRR, abs/0712.3146 (2007)

    Google Scholar 

  34. Ma, M., Palmigiano, A., Sadrzadeh, M.: Algebraic semantics and model completeness for intuitionistic public announcement logic. Ann. Pure Appl. Logic 165(4), 963–995 (2014)

    Article  MathSciNet  Google Scholar 

  35. Ma, M., Sano, K., Schwarzentruber, F., Velázquez-Quesada, F.R.: Tableaux for non-normal public announcement logic. In: Banerjee, M., Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 132–145. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45824-2_9

    Chapter  MATH  Google Scholar 

  36. Piecha, T., Schroeder-Heister, P., (eds.): Advances in Proof-Theoretic Semantics. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-22686-6

  37. Restall, G.: An Introduction to Substructural Logics. Routledge, London (2000)

    Book  Google Scholar 

  38. Schroeder-Heister, P.: Proof-theoretic semantics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition (2016)

    Google Scholar 

  39. Truffaut, J.: Implementation and improvements of a cut-free sequent calculus for dynamic epistemic logic. M.Sc. thesis, University of Oxford (2011)

    Google Scholar 

  40. van Ditmarsch, H., van Eijck, J., Hernández-Antón, I., Sietsma, F., Simon, S., Soler-Toscano, F.: Modelling cryptographic keys in dynamic epistemic logic with DEMO. In: Proceedings of 10th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS (2012)

    Google Scholar 

  41. van Ditmarsch, H.P., Kooi, B.: One Hundred Prisoners and a Light Bulb. Springer, Switzerland (2015). https://doi.org/10.1007/978-3-319-16694-0

  42. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Springer, Netherlands (2007). https://doi.org/10.1007/978-1-4020-5839-4

  43. Wansing, H.: Displaying Modal Logic. Kluwer, Netherlands (1998)

    Google Scholar 

Download references

Acknowledgements

At several crucial points, we profited from expert advice on Isabelle by Tom Ridge, Thomas Tuerk and Christian Urban. We thank Roy Crole and Hans van Ditmarsch for valuable comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Balco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balco, S., Frittella, S., Greco, G., Kurz, A., Palmigiano, A. (2018). Software Tool Support for Modular Reasoning in Modal Logics of Actions. In: Avigad, J., Mahboubi, A. (eds) Interactive Theorem Proving. ITP 2018. Lecture Notes in Computer Science(), vol 10895. Springer, Cham. https://doi.org/10.1007/978-3-319-94821-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94821-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94820-1

  • Online ISBN: 978-3-319-94821-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics