Investigating the Existence of Large Sets of Idempotent Quasigroups via Satisfiability Testing | SpringerLink
Skip to main content

Investigating the Existence of Large Sets of Idempotent Quasigroups via Satisfiability Testing

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10900))

Included in the following conference series:

Abstract

In this paper, we describe a method for solving some open problems in design theory based on SAT solvers. Modern SAT solvers are efficient and can produce unsatisfiability proofs. However, the state-of-the-art SAT solvers cannot solve the so-called large set problem of idempotent quasigroups. Two idempotent quasigroups over the same set of elements are said to be disjoint if at any position other than the main diagonal, the two elements from the two idempotent quasigroups at the same position are different. A collection of \(n-2\) idempotent quasigroups of order n is called a large set if all idempotent quasigroups are mutually disjoint, denoted by LIQ(n). The existence of LIQ(n) satisfying certain identities has been a challenge for modern SAT solvers even if \(n = 9\). We will use a finite-model generator to help the SAT solver avoiding symmetric search spaces, and take advantages of both first order logic and the SAT techniques. Furthermore, we use an incremental search strategy to find a maximum number of disjoint idempotent quasigroups, thus deciding the non-existence of large sets. The experimental results show that our method is highly efficient. The use of symmetry breaking is crucial to allow us to solve some instances in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/huangdiudiu/LIQ-search.

References

  1. Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable sequential equivalence checking across arbitrary design transformations. In: International Conference on Computer Design, pp. 259–266 (2006)

    Google Scholar 

  2. Cao, H., Ji, L., Zhu, L.: Large sets of disjoint packings on 6k + 5 points. J. Comb. Theory Ser. A 108(2), 169–183 (2004)

    Article  MathSciNet  Google Scholar 

  3. Cayley, A.: On the triadic arrangements of seven and fifteen things. Philos. Mag. 37(247), 50–53 (1946)

    Google Scholar 

  4. Chang, Y.: The spectrum for large sets of idempotent quasigroups. J. Comb. Des. 8(2), 79–82 (2015)

    Article  MathSciNet  Google Scholar 

  5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  6. Fujita, M., Slaney, J.K., Bennett, F.: Automatic generation of some results in finite algebra. In: International Joint Conference on Artificial Intelligence, pp. 52–57. Morgan Kaufmann (1993)

    Google Scholar 

  7. Gligoroski, D., Markovski, S., Knapskog, S.J.: A public key block cipher based on multivariate quadratic quasigroups. CoRR, abs/0808.0247 (2008)

    Google Scholar 

  8. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equivalence checking. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 114–121 (2001)

    Google Scholar 

  9. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_24

    Chapter  Google Scholar 

  10. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15

    Chapter  MATH  Google Scholar 

  11. Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based alignability algorithm for hardware equivalence verification. In: Formal Methods in Computer-Aided Design, pp. 20–26 (2007)

    Google Scholar 

  12. Koscielny, C.: Generating quasigroups for cryptographic applications. Int. J. Appl. Math. Comput. Sci. 12, 559–569 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Jiaxi, L.: On large sets of disjoint steiner triple systems II. J. Comb. Theory 37(2), 147–155 (1983)

    Article  MathSciNet  Google Scholar 

  14. Ma, F., Zhang, J.: Computer search for large sets of idempotent quasigroups. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 349–358. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87827-8_30

    Chapter  MATH  Google Scholar 

  15. McCune, W.: Mace4 reference manual and guide. CoRR, cs.SC/0310055 (2003)

    Google Scholar 

  16. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combinational equivalence checking. In: International Conference on Computer-Aided Design, pp. 836–843 (2006)

    Google Scholar 

  17. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  18. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, New York (2006)

    MATH  Google Scholar 

  19. Slaney, J.K., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search: quasigroup existence problems. Comput. Math. Appl. 29(2), 115–132 (1995)

    Article  MathSciNet  Google Scholar 

  20. Teirlinck, L., Lindner, C.C.: The construction of large sets of idempotent quasigroups. Eur. J. Comb. 9(1), 83–89 (1988)

    Article  MathSciNet  Google Scholar 

  21. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_31

    Chapter  MATH  Google Scholar 

  22. Yuan, L., Kang, Q.: Some infinite families of large sets of Kirkman triple systems. J. Comb. Des. 16(3), 202–212 (2008)

    Article  MathSciNet  Google Scholar 

  23. Zhang, H.: SATO: an efficient prepositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6_28

    Chapter  Google Scholar 

  24. Zhang, H.: Combinatorial designs by SAT solvers. In: Handbook of Satisfiability, pp. 533–568. IOS Press (2009)

    Google Scholar 

  25. Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. J. Autom. Reason. 24(1–2), 277–296 (2000)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J.: Automatic symmetry breaking method combined with SAT. In: ACM Symposium on Applied, Computing, pp. 17–21 (2001)

    Google Scholar 

  27. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: International Joint Conference on Artificial Intelligence, vol. 2, pp. 298–303 (1995)

    Google Scholar 

  28. Zhu, L.: Personal communication, September 2007

    Google Scholar 

  29. Zhu, L.: Large set problems for various idempotent quasigroups (2014)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National 973 Program of China under Grant 2014CB340701, the National Natural Science Foundation of China under Grant 61100064, and the CAS/SAFEA International Partnership Program for Creative Research Teams. Feifei Ma is also supported by the Youth Innovation Promotion Association, CAS. We thank Lie Zhu and Yanxun Chang for suggesting these open problems and help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feifei Ma or Jian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, P., Ma, F., Ge, C., Zhang, J., Zhang, H. (2018). Investigating the Existence of Large Sets of Idempotent Quasigroups via Satisfiability Testing. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94205-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94204-9

  • Online ISBN: 978-3-319-94205-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics