Abstract
In this paper, we describe a method for solving some open problems in design theory based on SAT solvers. Modern SAT solvers are efficient and can produce unsatisfiability proofs. However, the state-of-the-art SAT solvers cannot solve the so-called large set problem of idempotent quasigroups. Two idempotent quasigroups over the same set of elements are said to be disjoint if at any position other than the main diagonal, the two elements from the two idempotent quasigroups at the same position are different. A collection of \(n-2\) idempotent quasigroups of order n is called a large set if all idempotent quasigroups are mutually disjoint, denoted by LIQ(n). The existence of LIQ(n) satisfying certain identities has been a challenge for modern SAT solvers even if \(n = 9\). We will use a finite-model generator to help the SAT solver avoiding symmetric search spaces, and take advantages of both first order logic and the SAT techniques. Furthermore, we use an incremental search strategy to find a maximum number of disjoint idempotent quasigroups, thus deciding the non-existence of large sets. The experimental results show that our method is highly efficient. The use of symmetry breaking is crucial to allow us to solve some instances in reasonable time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable sequential equivalence checking across arbitrary design transformations. In: International Conference on Computer Design, pp. 259–266 (2006)
Cao, H., Ji, L., Zhu, L.: Large sets of disjoint packings on 6k + 5 points. J. Comb. Theory Ser. A 108(2), 169–183 (2004)
Cayley, A.: On the triadic arrangements of seven and fifteen things. Philos. Mag. 37(247), 50–53 (1946)
Chang, Y.: The spectrum for large sets of idempotent quasigroups. J. Comb. Des. 8(2), 79–82 (2015)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Fujita, M., Slaney, J.K., Bennett, F.: Automatic generation of some results in finite algebra. In: International Joint Conference on Artificial Intelligence, pp. 52–57. Morgan Kaufmann (1993)
Gligoroski, D., Markovski, S., Knapskog, S.J.: A public key block cipher based on multivariate quadratic quasigroups. CoRR, abs/0808.0247 (2008)
Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equivalence checking. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 114–121 (2001)
Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_24
Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15
Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based alignability algorithm for hardware equivalence verification. In: Formal Methods in Computer-Aided Design, pp. 20–26 (2007)
Koscielny, C.: Generating quasigroups for cryptographic applications. Int. J. Appl. Math. Comput. Sci. 12, 559–569 (2002)
Jiaxi, L.: On large sets of disjoint steiner triple systems II. J. Comb. Theory 37(2), 147–155 (1983)
Ma, F., Zhang, J.: Computer search for large sets of idempotent quasigroups. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 349–358. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87827-8_30
McCune, W.: Mace4 reference manual and guide. CoRR, cs.SC/0310055 (2003)
Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combinational equivalence checking. In: International Conference on Computer-Aided Design, pp. 836–843 (2006)
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38
Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, New York (2006)
Slaney, J.K., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search: quasigroup existence problems. Comput. Math. Appl. 29(2), 115–132 (1995)
Teirlinck, L., Lindner, C.C.: The construction of large sets of idempotent quasigroups. Eur. J. Comb. 9(1), 83–89 (1988)
Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_31
Yuan, L., Kang, Q.: Some infinite families of large sets of Kirkman triple systems. J. Comb. Des. 16(3), 202–212 (2008)
Zhang, H.: SATO: an efficient prepositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6_28
Zhang, H.: Combinatorial designs by SAT solvers. In: Handbook of Satisfiability, pp. 533–568. IOS Press (2009)
Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. J. Autom. Reason. 24(1–2), 277–296 (2000)
Zhang, J.: Automatic symmetry breaking method combined with SAT. In: ACM Symposium on Applied, Computing, pp. 17–21 (2001)
Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: International Joint Conference on Artificial Intelligence, vol. 2, pp. 298–303 (1995)
Zhu, L.: Personal communication, September 2007
Zhu, L.: Large set problems for various idempotent quasigroups (2014)
Acknowledgements
This work has been supported by the National 973 Program of China under Grant 2014CB340701, the National Natural Science Foundation of China under Grant 61100064, and the CAS/SAFEA International Partnership Program for Creative Research Teams. Feifei Ma is also supported by the Youth Innovation Promotion Association, CAS. We thank Lie Zhu and Yanxun Chang for suggesting these open problems and help.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Huang, P., Ma, F., Ge, C., Zhang, J., Zhang, H. (2018). Investigating the Existence of Large Sets of Idempotent Quasigroups via Satisfiability Testing. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-94205-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94204-9
Online ISBN: 978-3-319-94205-6
eBook Packages: Computer ScienceComputer Science (R0)