Abstract
In this study, we propose an optimum non-iterative algorithm for the minimum cable tension solution of two degree-of-freedom cable-driven robots. The problem is specifically defined for a cable-driven robot with one end-effector connected to four motors by four cables. A two-cable algorithm and a three-cable algorithm are presented with examples, then the optimal two-cable and three-cable solutions are proven for the absolute value norm and Euclidean norm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pott, A., Bruckmann, T. (eds.): Cable-Driven Parallel Robots. MMS, vol. 32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09489-2
Gosselin, C., Cardou, P., Bruckmann, T., Pott, A. (eds.): Cable-Driven Parallel Robots. MMS, vol. 53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61431-1
Gosselin, C.: Cable-driven parallel mechanisms: state of the art and perspectives. Mech. Eng. Rev. 1(1), DSM0004 (2014)
Tang, X.: An overview of the development for cable-driven parallel manipulator. J. Adv. Mech. Eng. 6, 823028 (2014)
Fang, S., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatron. 9(3), 561–568 (2004)
Hassan, M., Khajepour, A.: Minimization of bounded cable tensions in cable-based parallel manipulators. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 8, Las Vegas, USA, pp. 991–999 (2007)
Borgstrom, P.H., Jordan, B.L., Sukhatme, G.S., Batalin, M.A., Kaiser, W.J.: Rapid computation of optimally safe tension distributions for parallel cable-driven robots. IEEE Trans. Rob. 25(6), 1271–1281 (2009)
Pott, A.: An improved force distribution algorithm for over-constrained cable-driven parallel robots. In: Thomas, F., Pérez Gracia, A. (eds.) Computational Kinematics. MMS, vol. 15, pp. 139–146. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7214-4_16
Bedoustani, Y.B., Taghirad, H.D.: Iterative-analytic redundancy resolution scheme for a cable-driven redundant parallel manipulator. In: International Conference on Advanced Intelligent Mechatronics, Montreal, USA, pp. 219–224 (2010)
Taghirad, H.D., Bedoustani, Y.B.: An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators. IEEE Trans. Rob. 27(6), 1137–1143 (2011)
Côté, A.F., Cardou, P., Gosselin, C.: A tension distribution algorithm for cable-driven parallel robots operating beyond their wrench-feasible workspace. In: International Conference on Control, Automation and Systems, Gyeongju, South Korea, pp. 68–73 (2016)
Tang, X., Wang, W., Tang, L.: A geometrical workspace calculation method for cable-driven parallel manipulators on minimum tension condition. Adv. Rob. 30(16), 1061–1071 (2016)
Mikelsons, L., Bruckmann, T., Hiller, M., Schramm, D.: A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators. In: International Conference on Robotics and Automation, Pasadena, CA, pp. 3869–3874 (2008)
Gosselin, C., Grenier, M.: On the determination of the force distribution in over constrained cable-driven parallel mechanisms. Meccanica 46(1), 3–15 (2011)
Lamaury, J., Gouttefarde, M.: A tension distribution method with improved computational efficiency. Mech. Mach. Sci. 12, 71–85 (2013)
Gouttefarde, M., Lamaury, J., Reichert, C., Bruckmann, T.: A versatile tension distribution algorithm for n-DOF parallel robots driven by n + 2 cables. IEEE Trans. Rob. 31(6), 1444–1457 (2015)
Williams II, R.L, Vadia, J.: Planar translational cable-direct-driven robots: hardware implementation. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2, pp. 1135–1142 (2003)
Shen, Y., Osumi, H., Arai, T.: Manipulability measures for multi-wire driven parallel mechanisms. In: IEEE International Conference on Industrial Technology, Guangzhou, pp. 550–554 (1994)
Acknowledgment
The authors gratefully acknowledge the financial support of the weDRAW project funded by the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 732391.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Baud-Bovy, G., Cetin, K. (2018). A Simple Minimum Cable-Tension Algorithm for a 2-DOF Planar Cable-Driven Robot Driven by 4 Cables. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-93399-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93398-6
Online ISBN: 978-3-319-93399-3
eBook Packages: Computer ScienceComputer Science (R0)