A Simple Minimum Cable-Tension Algorithm for a 2-DOF Planar Cable-Driven Robot Driven by 4 Cables | SpringerLink
Skip to main content

A Simple Minimum Cable-Tension Algorithm for a 2-DOF Planar Cable-Driven Robot Driven by 4 Cables

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Abstract

In this study, we propose an optimum non-iterative algorithm for the minimum cable tension solution of two degree-of-freedom cable-driven robots. The problem is specifically defined for a cable-driven robot with one end-effector connected to four motors by four cables. A two-cable algorithm and a three-cable algorithm are presented with examples, then the optimal two-cable and three-cable solutions are proven for the absolute value norm and Euclidean norm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pott, A., Bruckmann, T. (eds.): Cable-Driven Parallel Robots. MMS, vol. 32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09489-2

    Book  Google Scholar 

  2. Gosselin, C., Cardou, P., Bruckmann, T., Pott, A. (eds.): Cable-Driven Parallel Robots. MMS, vol. 53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61431-1

    Book  Google Scholar 

  3. Gosselin, C.: Cable-driven parallel mechanisms: state of the art and perspectives. Mech. Eng. Rev. 1(1), DSM0004 (2014)

    Article  Google Scholar 

  4. Tang, X.: An overview of the development for cable-driven parallel manipulator. J. Adv. Mech. Eng. 6, 823028 (2014)

    Article  Google Scholar 

  5. Fang, S., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatron. 9(3), 561–568 (2004)

    Article  Google Scholar 

  6. Hassan, M., Khajepour, A.: Minimization of bounded cable tensions in cable-based parallel manipulators. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 8, Las Vegas, USA, pp. 991–999 (2007)

    Google Scholar 

  7. Borgstrom, P.H., Jordan, B.L., Sukhatme, G.S., Batalin, M.A., Kaiser, W.J.: Rapid computation of optimally safe tension distributions for parallel cable-driven robots. IEEE Trans. Rob. 25(6), 1271–1281 (2009)

    Article  Google Scholar 

  8. Pott, A.: An improved force distribution algorithm for over-constrained cable-driven parallel robots. In: Thomas, F., Pérez Gracia, A. (eds.) Computational Kinematics. MMS, vol. 15, pp. 139–146. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7214-4_16

    Chapter  Google Scholar 

  9. Bedoustani, Y.B., Taghirad, H.D.: Iterative-analytic redundancy resolution scheme for a cable-driven redundant parallel manipulator. In: International Conference on Advanced Intelligent Mechatronics, Montreal, USA, pp. 219–224 (2010)

    Google Scholar 

  10. Taghirad, H.D., Bedoustani, Y.B.: An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators. IEEE Trans. Rob. 27(6), 1137–1143 (2011)

    Article  Google Scholar 

  11. Côté, A.F., Cardou, P., Gosselin, C.: A tension distribution algorithm for cable-driven parallel robots operating beyond their wrench-feasible workspace. In: International Conference on Control, Automation and Systems, Gyeongju, South Korea, pp. 68–73 (2016)

    Google Scholar 

  12. Tang, X., Wang, W., Tang, L.: A geometrical workspace calculation method for cable-driven parallel manipulators on minimum tension condition. Adv. Rob. 30(16), 1061–1071 (2016)

    Article  Google Scholar 

  13. Mikelsons, L., Bruckmann, T., Hiller, M., Schramm, D.: A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators. In: International Conference on Robotics and Automation, Pasadena, CA, pp. 3869–3874 (2008)

    Google Scholar 

  14. Gosselin, C., Grenier, M.: On the determination of the force distribution in over constrained cable-driven parallel mechanisms. Meccanica 46(1), 3–15 (2011)

    Article  MathSciNet  Google Scholar 

  15. Lamaury, J., Gouttefarde, M.: A tension distribution method with improved computational efficiency. Mech. Mach. Sci. 12, 71–85 (2013)

    Article  Google Scholar 

  16. Gouttefarde, M., Lamaury, J., Reichert, C., Bruckmann, T.: A versatile tension distribution algorithm for n-DOF parallel robots driven by n + 2 cables. IEEE Trans. Rob. 31(6), 1444–1457 (2015)

    Article  Google Scholar 

  17. Williams II, R.L, Vadia, J.: Planar translational cable-direct-driven robots: hardware implementation. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2, pp. 1135–1142 (2003)

    Google Scholar 

  18. Shen, Y., Osumi, H., Arai, T.: Manipulability measures for multi-wire driven parallel mechanisms. In: IEEE International Conference on Industrial Technology, Guangzhou, pp. 550–554 (1994)

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of the weDRAW project funded by the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 732391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Baud-Bovy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baud-Bovy, G., Cetin, K. (2018). A Simple Minimum Cable-Tension Algorithm for a 2-DOF Planar Cable-Driven Robot Driven by 4 Cables. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics