Optimization of the University Transportation by Contraction Hierarchies Method and Clustering Algorithms | SpringerLink
Skip to main content

Optimization of the University Transportation by Contraction Hierarchies Method and Clustering Algorithms

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Abstract

This research work focuses on the study of different models of solution reflected in the literature, which treat the optimization of the routing of vehicles by nodes and the optimal route for the university transport service. With the recent expansion of the facilities of a university institution, the allocation of the routes for the transport of its students, became more complex. As a result, geographic information systems (GIS) tools and operations research methodologies are applied, such as graph theory and vehicular routing problems, to facilitate mobilization and improve the students transport service, as well as optimizing the transfer time and utilization of the available transport units. An optimal route management procedure has been implemented to maximize the level of service of student transport using the K-means clustering algorithm and the method of node contraction hierarchies, with low cost due to the use of free software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)

    Article  MathSciNet  Google Scholar 

  2. Toth, P., Vigo, D.: Vehicle Routing Problem, Methods, and Application (2014)

    Google Scholar 

  3. Martí, R.: Procedimientos Metaheurísticos en Optimización Combinatoria. Dep. d’Estadística i Investig. Oper. pp. 1–60 (2001)

    Google Scholar 

  4. Eldrandaly, K.A., Abdallah, A.M.F.: A novel GIS-based decision-making framework for the school bus routing problem. Geo-Spatial Inf. Sci. 15(1), 51–59 (2012)

    Article  Google Scholar 

  5. Huo, L., Yan, G., Fan, B., Wang, H., Gao, W.: School bus routing problem based on ant colony optimization algorithm. In: 2014 IEEE Conference of Expo and Transportation Electrification, Asia-Pacific (ITEC Asia-Pacific), no. 1, pp. 1–5 (2014)

    Google Scholar 

  6. Shiripour, S., Mahdavi-Amiri, N., Mahdavi, I.: Optimal location-multi-allocation-routing in capacitated transportation networks under population-dependent travel times. Int. J. Comput. Integr. Manuf. 29(6), 652–676 (2016)

    Article  Google Scholar 

  7. Hashi, E.K., Hasan, M.R., Zaman, M.S.U.: GIS based heuristic solution of the vehicle routing problem to optimize the school bus routing and scheduling. In: 9th International Conference on Computer and Information Technology, ICCIT 2016, pp. 56–60 (2016)

    Google Scholar 

  8. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68552-4_24

    Chapter  Google Scholar 

  9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  10. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  11. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. J. Exp. Algorithm. 18, 1.1–1.43 (2013)

    Article  MathSciNet  Google Scholar 

  12. Open Source Routing Machine DEMO (2017). http://map.project-osrm.org/. Accessed 23 Mar 2017

  13. Fu, L., Sun, D., Rilett, L.R.: Heuristic shortest path algorithms for transportation applications: state of the art. Comput. Oper. Res. 33(11), 3324–3343 (2006)

    Article  Google Scholar 

  14. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  15. Shen, C.-W., Quadrifoglio, L.: Evaluation of zoning design with transfers for paratransit services, no. 2277 (2012)

    Article  Google Scholar 

  16. Ng, W.L., Leung, S.C.H., Lam, J.K.P., Pan, S.W.: Petrol delivery tanker assignment and routing: a case study in Hong Kong. J. Oper. Res. Soc. 59(9), 1191–1200 (2008)

    Article  Google Scholar 

  17. Yossi, S.: Logistics Clusters. Mit Press, Cambridge (2012)

    Google Scholar 

  18. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithms: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  19. OSMF, OpenStreetMap (2017). https://www.openstreetmap.org/#map=5/51.500/-0.100. Accessed 07 Apr 2017

  20. Kim, B.-I., Kim, S., Sahoo, S.: Balanced clustering algorithms for improving shapes on vehicle routing problems. In: IIE Annual Conference and Exhibition 2004 (2004)

    Google Scholar 

  21. Herrera, I.: Diseño y evaluación de un algoritmo genético para ruteo vehicular que permita optimizar la distribución en una empresa comercializadora de autopartes en quito, Escuela Superior Politécnica del Litoral (2015)

    Google Scholar 

  22. R Project: R: K-Means Clustering (2016). https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html

  23. Rueda, S.: Plan Especial de Indicadores de Sostenibilidad Ambiental de la Actividad Urbanística de Sevilla. Agencia Ecol. Urbana Barcelona, Barcelona (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro L. Lorente-Leyva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herrera-Granda, I.D. et al. (2018). Optimization of the University Transportation by Contraction Hierarchies Method and Clustering Algorithms. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics