Abstract
The Modus Ponens becomes an essential property in approximate reasoning and fuzzy control when forward inferences are managed. Thus, the conjunctor and the fuzzy implication function used in the inference process are required to satisfy this property. Usually, the conjunctor is modeled by a t-norm, but recently also by conjunctive uninorms. In this paper we study when (U, N)-implications satisfy the Modus Ponens property with respect to a conjunctive uninorm U in general, in a similar way as it was previously done for RU-implications. The functional inequality derived from the Modus Ponens involves in this case two different uninorms and a fuzzy negation leading to many possibilities. So, this communication presents only a first step in this study and many cases depending on the classes of the involved uninorms are worth to study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The subindex “cos” stands here for continuous open square.
- 2.
Recall that continuous negations are the most usual ones. In particular, they contain the strong negations (those that are involutive) and also the strict ones (those that are strictly decreasing and continuous).
References
Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Inf. Sci. 180, 3992–4005 (2010)
Alsina, C., Trillas, E.: When \((S, N)\)-implications are \((T, T_1)\)-conditional functions? Fuzzy Sets Syst. 134, 305–310 (2003)
Baczyński, M., Beliakov, G., Bustince Sola, H., Pradera, A. (eds.): Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35677-3
Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)
Baczyński, M., Jayaram, B.: (U, N)-implications and their characterizations. Fuzzy Sets and Systems 160, 2049–2062 (2009). https://doi.org/10.1007/978-3-540-69082-5
Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8, 1156–1163 (1997)
Czogala, E., Drewniak, J.: Associative monotonic operations in fuzzy set theory. Fuzzy Sets Syst. 12, 249–269 (1984)
De Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)
De Baets, B., Fodor, J.C.: Residual operators of uninorms. Soft Comput. 3, 89–100 (1999)
De Baets, B., Fodor, J.: Van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104, 133–136 (1999)
Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 5, 411–427 (1997)
Hu, S., Li, Z.: The structure of continuous uni-norms. Fuzzy Sets Syst. 124, 43–52 (2001)
Li, G., Liu, H.W.: On properties of uninorms locally internal on the boundary. Fuzzy Sets Syst. 332, 116–128 (2018)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)
Martín, J., Mayor, G., Torrens, J.: On locally internal monotonic operators. Fuzzy Sets Syst. 137, 27–42 (2003)
Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)
Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: \(RU\) and \((U, N)\)-implications satisfying Modus Ponens. Int. J. Approximate Reasoning 73, 123–137 (2016)
Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms. Fuzzy Sets Syst. 158, 2612–2626 (2007)
Mas, M., Monserrat, M., Torrens, J.: A characterization of \((U, N), RU, QL\) and \(D\)-implications derived from uninorms satisfying the law of importation. Fuzzy Sets Syst. 161, 1369–1387 (2010)
Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)
Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: On a generalization of the Modus Ponens: U-conditionality. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 610, pp. 1–12. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40596-4_33
Mas, M., Ruiz-Aguilera, D., Torrens, J.: On some classes of RU-implications satisfying U-Modus Ponens. In: Torra, V., Mesiar, R., De Baets, B. (eds.) AGOP 2017. AISC, vol. 581, pp. 71–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59306-7_8
Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Inf. Sci. 181, 2111–2127 (2011)
Massanet, S., Torrens, J.: An overview of construction methods of fuzzy implications. In: Baczyński, M., Beliakov, G., Bustince Sola, H., Pradera, A. (eds.) Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300, pp. 1–30. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35677-3_1
Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symbolic Logic 72, 834–864 (2007)
Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)
Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets Syst. 158, 23–37 (2007)
Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in \(]0,1[^2\) and their distributivity over uninorms. Fuzzy Sets Syst. 160, 832–852 (2009)
Ruiz-Aguilera, D., Torrens, J., De Baets, B., Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 425–434. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_44
Trillas, E., Alsina, C., Pradera, A.: On MPT-implication functions for fuzzy logic. Revista de la Real Academia de Ciencias. Serie A. Matemáticas (RACSAM) 98(1), 259–271 (2004)
Trillas, E., Alsina, C., Renedo, E., Pradera, A.: On contra-symmetry and MPT-conditionality in fuzzy logic. Int. J. Intell. Syst. 20, 313–326 (2005)
Trillas, E., Campo, C., Cubillo, S.: When QM-operators are implication functions and conditional fuzzy relations. Int. J. Intell. Syst. 15, 647–655 (2000)
Trillas, E., Valverde, L.: On Modus Ponens in fuzzy logic. In: 15th International Symposium on Multiple-Valued Logic, pp. 294–301. Kingston, Canada (1985)
Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)
Acknowledgments
This paper has been supported by the Spanish Grant TIN2016-75404-P AEI/FEDER, UE.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Mas, M., Ruiz-Aguilera, D., Torrens, J. (2018). Generalized Modus Ponens for (U, N)-implications. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-91473-2_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91472-5
Online ISBN: 978-3-319-91473-2
eBook Packages: Computer ScienceComputer Science (R0)