Generalized Modus Ponens for (U, N)-implications | SpringerLink
Skip to main content

Abstract

The Modus Ponens becomes an essential property in approximate reasoning and fuzzy control when forward inferences are managed. Thus, the conjunctor and the fuzzy implication function used in the inference process are required to satisfy this property. Usually, the conjunctor is modeled by a t-norm, but recently also by conjunctive uninorms. In this paper we study when (UN)-implications satisfy the Modus Ponens property with respect to a conjunctive uninorm U in general, in a similar way as it was previously done for RU-implications. The functional inequality derived from the Modus Ponens involves in this case two different uninorms and a fuzzy negation leading to many possibilities. So, this communication presents only a first step in this study and many cases depending on the classes of the involved uninorms are worth to study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The subindex “cos” stands here for continuous open square.

  2. 2.

    Recall that continuous negations are the most usual ones. In particular, they contain the strong negations (those that are involutive) and also the strict ones (those that are strictly decreasing and continuous).

References

  1. Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Inf. Sci. 180, 3992–4005 (2010)

    Article  MathSciNet  Google Scholar 

  2. Alsina, C., Trillas, E.: When \((S, N)\)-implications are \((T, T_1)\)-conditional functions? Fuzzy Sets Syst. 134, 305–310 (2003)

    Article  Google Scholar 

  3. Baczyński, M., Beliakov, G., Bustince Sola, H., Pradera, A. (eds.): Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35677-3

    Book  MATH  Google Scholar 

  4. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. Baczyński, M., Jayaram, B.: (U, N)-implications and their characterizations. Fuzzy Sets and Systems 160, 2049–2062 (2009). https://doi.org/10.1007/978-3-540-69082-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8, 1156–1163 (1997)

    Article  Google Scholar 

  7. Czogala, E., Drewniak, J.: Associative monotonic operations in fuzzy set theory. Fuzzy Sets Syst. 12, 249–269 (1984)

    Article  MathSciNet  Google Scholar 

  8. De Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)

    Article  Google Scholar 

  9. De Baets, B., Fodor, J.C.: Residual operators of uninorms. Soft Comput. 3, 89–100 (1999)

    Article  Google Scholar 

  10. De Baets, B., Fodor, J.: Van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104, 133–136 (1999)

    Article  MathSciNet  Google Scholar 

  11. Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 5, 411–427 (1997)

    Article  MathSciNet  Google Scholar 

  12. Hu, S., Li, Z.: The structure of continuous uni-norms. Fuzzy Sets Syst. 124, 43–52 (2001)

    Article  MathSciNet  Google Scholar 

  13. Li, G., Liu, H.W.: On properties of uninorms locally internal on the boundary. Fuzzy Sets Syst. 332, 116–128 (2018)

    Article  MathSciNet  Google Scholar 

  14. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  15. Martín, J., Mayor, G., Torrens, J.: On locally internal monotonic operators. Fuzzy Sets Syst. 137, 27–42 (2003)

    Article  Google Scholar 

  16. Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)

    Article  MathSciNet  Google Scholar 

  17. Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: \(RU\) and \((U, N)\)-implications satisfying Modus Ponens. Int. J. Approximate Reasoning 73, 123–137 (2016)

    Article  MathSciNet  Google Scholar 

  18. Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms. Fuzzy Sets Syst. 158, 2612–2626 (2007)

    Article  MathSciNet  Google Scholar 

  19. Mas, M., Monserrat, M., Torrens, J.: A characterization of \((U, N), RU, QL\) and \(D\)-implications derived from uninorms satisfying the law of importation. Fuzzy Sets Syst. 161, 1369–1387 (2010)

    Article  MathSciNet  Google Scholar 

  20. Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)

    Article  Google Scholar 

  21. Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: On a generalization of the Modus Ponens: U-conditionality. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 610, pp. 1–12. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40596-4_33

    Chapter  MATH  Google Scholar 

  22. Mas, M., Ruiz-Aguilera, D., Torrens, J.: On some classes of RU-implications satisfying U-Modus Ponens. In: Torra, V., Mesiar, R., De Baets, B. (eds.) AGOP 2017. AISC, vol. 581, pp. 71–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59306-7_8

    Chapter  Google Scholar 

  23. Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Inf. Sci. 181, 2111–2127 (2011)

    Article  MathSciNet  Google Scholar 

  24. Massanet, S., Torrens, J.: An overview of construction methods of fuzzy implications. In: Baczyński, M., Beliakov, G., Bustince Sola, H., Pradera, A. (eds.) Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300, pp. 1–30. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35677-3_1

    Chapter  MATH  Google Scholar 

  25. Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symbolic Logic 72, 834–864 (2007)

    Article  MathSciNet  Google Scholar 

  26. Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets Syst. 158, 23–37 (2007)

    Article  MathSciNet  Google Scholar 

  28. Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in \(]0,1[^2\) and their distributivity over uninorms. Fuzzy Sets Syst. 160, 832–852 (2009)

    Article  MathSciNet  Google Scholar 

  29. Ruiz-Aguilera, D., Torrens, J., De Baets, B., Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 425–434. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_44

    Chapter  Google Scholar 

  30. Trillas, E., Alsina, C., Pradera, A.: On MPT-implication functions for fuzzy logic. Revista de la Real Academia de Ciencias. Serie A. Matemáticas (RACSAM) 98(1), 259–271 (2004)

    Google Scholar 

  31. Trillas, E., Alsina, C., Renedo, E., Pradera, A.: On contra-symmetry and MPT-conditionality in fuzzy logic. Int. J. Intell. Syst. 20, 313–326 (2005)

    Article  Google Scholar 

  32. Trillas, E., Campo, C., Cubillo, S.: When QM-operators are implication functions and conditional fuzzy relations. Int. J. Intell. Syst. 15, 647–655 (2000)

    Article  Google Scholar 

  33. Trillas, E., Valverde, L.: On Modus Ponens in fuzzy logic. In: 15th International Symposium on Multiple-Valued Logic, pp. 294–301. Kingston, Canada (1985)

    Google Scholar 

  34. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper has been supported by the Spanish Grant TIN2016-75404-P AEI/FEDER, UE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ruiz-Aguilera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mas, M., Ruiz-Aguilera, D., Torrens, J. (2018). Generalized Modus Ponens for (UN)-implications. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91473-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91472-5

  • Online ISBN: 978-3-319-91473-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics