Abstract
In the paper, a new symmetry measure is proposed to evaluate the symmetry/asymmetry of the hue distribution within the segmented part of the image. A new symmetry/asymmetry area measure (ASM) as well as their parts: the asymmetry measures of: the shape distribution (ASMShape), hue distribution (ASMHue) and structures distribution (ASMStuct) are proposed and discussed. In the paper, a dermatological asymmetry measure in shape (DASMShape) and hue (DASMHue) are presented and discussed thoroughly as well as their ASMShape and ASMHue applications. The hue distribution of the symmetry/asymmetry of the segmented skin lesion is discussed. One of the DASMHue measures is thoroughly presented. The results of the DASMHue algorithm based on the threshold binary masks using PH2 dataset shows stronger overestimating results but the total ratio 95.8% of correctly and overestimated cases is better than the ratio which takes into account only shape alone.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)
Bigun, J., DuBuf, J.M.H.: N-folded symmetries by complex moments in Gabor space and their application to unsupervized texture segmentation. IEEE Pattern Anal. Mach. Intell. 16(1), 80–87 (1994)
Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recogn. 10, 167–180 (1978)
Brady, M., Asada, H.: Smoothed local symmetries and their implementation. Int. J. Robot. Res. 3(3), 36–61 (1984)
Cardili, R.N., Roselino, A.M.: Elementary lesions in dermatological semiology: literature review. Anais brasileiros de dermatologia 91(5), 629–633 (2016)
Chummun, S., McLean, N.R.: The management of malignant skin cancers. Surgery 29(10), 529–533 (2011)
Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. In: Celebi, M.E., Mendonca, T., Marques, J.S. (eds.) Dermoscopy Image Analysis, pp. 97–129. CRC Press, Boca Raton (2015)
Cross, A.D.J., Hancock, E.R.: Scale space vector fields for symmetry detection. Image Vis. Comput. 17(5–6), 337–345 (1999)
Deserno, T.M.: Biomedical Image Processing. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15816-2
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)
Di Gesù, V., Valenti, C.: Symmetry operators in computer vision. Vistas Astronom. 40(4), 461–468 (1996)
Henning, J.S., et al.: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)
Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall of India, New Delhi (2002)
Jaworek-Korjakowska, J., Kłeczek, P., Tadeusiewicz, R.: Detection and classification of pigment network in dermoscopic color images as one of the 7-point checklist criteria. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds.) PCBBE 2017. AISC, vol. 647, pp. 174–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66905-2_15
Jaworek-Korjakowska, J., Kłeczek, P., Grzegorzek, M., Shirahama, K.: Automatic detection of blue-whitish veil as the primary dermoscopic feature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 649–657. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_58
Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of asymmetry in dermoscopic colour images of pigmented skin lesions. In: Proceedings of IASTED International Conference on Biomedical Engineering, BioMed 2013, pp. 368–375 (2013)
Jaworek-Korjakowska, J., Tadeusiewicz, R.: Determination of border irregularity in dermoscopic color images of pigmented skin lesions. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 6459–6462 (2014)
Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of dots and globules in dermoscopic color images as one of the 7-point check list criteria. In: Proceedings of IEEE International Conference on Image Processing, ICIP 2013, pp. 1456–1460 (2013)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Manmatha, R., Sawhney, H.: Finding symmetry in intensity images. Technical report (1997)
Marola, G.: On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans. Pattern Anal. Mach. Intell. 11, 104–108 (1989)
Mehta, R., Egiazarian, K.O.: Rotation invariant texture description using symmetric dense microblock difference. IEEE Sig. Process. Lett. 23(6), 833–837 (2016)
Mendoncca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH2 - a dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 5437–5440 (2013)
Menzies, S.W., Crotty, K.A., Ingvar, C., McCarthy, W.H.: An Atlas of Surface Microscopy of Pigmented Skin Lesions: Dermoscopy, 2nd edn. McGrawHill, Roseville (2003)
Milczarski, P.: Skin lesion symmetry of hue distribution. In: Proceedings of IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1006–1013 (2017)
Milczarski, P., Stawska, Z., Maślanka, P.: Skin lesions dermatological shape asymmetry measures. In: Proceedings of IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1056–1062 (2017)
Milczarski, P., Stawska, Z., Was, L., Wiak, S., Kot, M.: New dermatological asymmetry measure of skin lesions. Int. J. Neural Netw. Adv. Appl. 4, 32–38 (2017). (Prague)
Pathan, S., et al.: Biomed. Sig. Process. Control 39, 237–262 (2018). Elsevier
Rosendahl, C., Cameron, A., McColl, I., Wilkinson, D.: Dermatoscopy in routine practice “Chaos and Clues”. Aust. Fam. Phys. 41(7), 482487 (2012)
Schmid, P.: Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Trans. Med. Imaging 18(2), 164–171 (1999)
Shen, D., Ip, H., Cheung, K.T., Teoh, E.K.: Symmetry detection by generalized complex moments: a close-form solution. IEEE Pattern Anal. Mach. Intell. 21(5), 466–476 (1999)
Shen, D., Ip, H., Teoh, E.K.: An energy of assymmetry for accurate detection of global reflexion axes. Image Vis. Comput. 19, 283–297 (2001)
Sirakov, N.M., Mete, M., Chakrader, N.S.: Automatic boundary detection and symmetry calculation in dermoscopy images of skin lesions. In: 18th IEEE International Conference on Image Processing, Brussels, pp. 1605–1608 (2011)
Soyer, H.P., Argenziano, G., Hofmann-Wellenhof, R., Zalaudek, I.: Dermoscopy: The Essentials, 2nd edn. Saunders Ltd., Philadelphia (2011)
Soyer, H.P., Argenziano, G., Zalaudek, I., Corona, R., Sera, F., Talamini, R., et al.: Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology 208(1), 27–31 (2004)
Stolz, W., Riemann, A., Cognetta, A.B., Pillet, L., Abmayr, W., Hölzel, D., et al.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J. Dermatol. 4, 521–527 (1994)
Was, L., Milczarski, P., Stawska, Z., Wyczechowski, M., Kot, M., Wiak, S., Wozniacka, A., Pietrzak, L.: Analysis of dermatoses using segmentation and color hue in reference to skin lesions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 677–689. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_61
Wighton, P., Lee, T.K., Lui, H., McLean, D.I., Atkins, M.S.: Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans. Inf Technol. Biomed. 15, 622–629 (2011)
Xie, F., Bovik, A.C.: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recognit. 46, 1012–1019 (2013)
Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Pattern Anal. Mach. Intell. 17(12), 1154–1166 (1995)
Zavidovique, B., Di Gesù, V.: The S-kernel: ameasure of symmetry of objects. Pattern Recogn. 40, 839–852 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Milczarski, P. (2018). Symmetry of Hue Distribution in the Images. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-91262-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91261-5
Online ISBN: 978-3-319-91262-2
eBook Packages: Computer ScienceComputer Science (R0)