Symmetry of Hue Distribution in the Images | SpringerLink
Skip to main content

Symmetry of Hue Distribution in the Images

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

Abstract

In the paper, a new symmetry measure is proposed to evaluate the symmetry/asymmetry of the hue distribution within the segmented part of the image. A new symmetry/asymmetry area measure (ASM) as well as their parts: the asymmetry measures of: the shape distribution (ASMShape), hue distribution (ASMHue) and structures distribution (ASMStuct) are proposed and discussed. In the paper, a dermatological asymmetry measure in shape (DASMShape) and hue (DASMHue) are presented and discussed thoroughly as well as their ASMShape and ASMHue applications. The hue distribution of the symmetry/asymmetry of the segmented skin lesion is discussed. One of the DASMHue measures is thoroughly presented. The results of the DASMHue algorithm based on the threshold binary masks using PH2 dataset shows stronger overestimating results but the total ratio 95.8% of correctly and overestimated cases is better than the ratio which takes into account only shape alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)

    Article  Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Bigun, J., DuBuf, J.M.H.: N-folded symmetries by complex moments in Gabor space and their application to unsupervized texture segmentation. IEEE Pattern Anal. Mach. Intell. 16(1), 80–87 (1994)

    Article  Google Scholar 

  4. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recogn. 10, 167–180 (1978)

    Article  Google Scholar 

  5. Brady, M., Asada, H.: Smoothed local symmetries and their implementation. Int. J. Robot. Res. 3(3), 36–61 (1984)

    Article  Google Scholar 

  6. Cardili, R.N., Roselino, A.M.: Elementary lesions in dermatological semiology: literature review. Anais brasileiros de dermatologia 91(5), 629–633 (2016)

    Article  Google Scholar 

  7. Chummun, S., McLean, N.R.: The management of malignant skin cancers. Surgery 29(10), 529–533 (2011)

    Google Scholar 

  8. Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. In: Celebi, M.E., Mendonca, T., Marques, J.S. (eds.) Dermoscopy Image Analysis, pp. 97–129. CRC Press, Boca Raton (2015)

    Chapter  Google Scholar 

  9. Cross, A.D.J., Hancock, E.R.: Scale space vector fields for symmetry detection. Image Vis. Comput. 17(5–6), 337–345 (1999)

    Article  Google Scholar 

  10. Deserno, T.M.: Biomedical Image Processing. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15816-2

    Book  MATH  Google Scholar 

  11. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  12. Di Gesù, V., Valenti, C.: Symmetry operators in computer vision. Vistas Astronom. 40(4), 461–468 (1996)

    Article  Google Scholar 

  13. Henning, J.S., et al.: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)

    Article  Google Scholar 

  14. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall of India, New Delhi (2002)

    MATH  Google Scholar 

  15. Jaworek-Korjakowska, J., Kłeczek, P., Tadeusiewicz, R.: Detection and classification of pigment network in dermoscopic color images as one of the 7-point checklist criteria. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds.) PCBBE 2017. AISC, vol. 647, pp. 174–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66905-2_15

    Chapter  Google Scholar 

  16. Jaworek-Korjakowska, J., Kłeczek, P., Grzegorzek, M., Shirahama, K.: Automatic detection of blue-whitish veil as the primary dermoscopic feature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 649–657. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_58

    Chapter  Google Scholar 

  17. Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of asymmetry in dermoscopic colour images of pigmented skin lesions. In: Proceedings of IASTED International Conference on Biomedical Engineering, BioMed 2013, pp. 368–375 (2013)

    Google Scholar 

  18. Jaworek-Korjakowska, J., Tadeusiewicz, R.: Determination of border irregularity in dermoscopic color images of pigmented skin lesions. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 6459–6462 (2014)

    Google Scholar 

  19. Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of dots and globules in dermoscopic color images as one of the 7-point check list criteria. In: Proceedings of IEEE International Conference on Image Processing, ICIP 2013, pp. 1456–1460 (2013)

    Google Scholar 

  20. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  22. Manmatha, R., Sawhney, H.: Finding symmetry in intensity images. Technical report (1997)

    Google Scholar 

  23. Marola, G.: On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans. Pattern Anal. Mach. Intell. 11, 104–108 (1989)

    Article  Google Scholar 

  24. Mehta, R., Egiazarian, K.O.: Rotation invariant texture description using symmetric dense microblock difference. IEEE Sig. Process. Lett. 23(6), 833–837 (2016)

    Article  Google Scholar 

  25. Mendoncca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH2 - a dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 5437–5440 (2013)

    Google Scholar 

  26. Menzies, S.W., Crotty, K.A., Ingvar, C., McCarthy, W.H.: An Atlas of Surface Microscopy of Pigmented Skin Lesions: Dermoscopy, 2nd edn. McGrawHill, Roseville (2003)

    Google Scholar 

  27. Milczarski, P.: Skin lesion symmetry of hue distribution. In: Proceedings of IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1006–1013 (2017)

    Google Scholar 

  28. Milczarski, P., Stawska, Z., Maślanka, P.: Skin lesions dermatological shape asymmetry measures. In: Proceedings of IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1056–1062 (2017)

    Google Scholar 

  29. Milczarski, P., Stawska, Z., Was, L., Wiak, S., Kot, M.: New dermatological asymmetry measure of skin lesions. Int. J. Neural Netw. Adv. Appl. 4, 32–38 (2017). (Prague)

    Google Scholar 

  30. Pathan, S., et al.: Biomed. Sig. Process. Control 39, 237–262 (2018). Elsevier

    Google Scholar 

  31. Rosendahl, C., Cameron, A., McColl, I., Wilkinson, D.: Dermatoscopy in routine practice “Chaos and Clues”. Aust. Fam. Phys. 41(7), 482487 (2012)

    Google Scholar 

  32. Schmid, P.: Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Trans. Med. Imaging 18(2), 164–171 (1999)

    Article  Google Scholar 

  33. Shen, D., Ip, H., Cheung, K.T., Teoh, E.K.: Symmetry detection by generalized complex moments: a close-form solution. IEEE Pattern Anal. Mach. Intell. 21(5), 466–476 (1999)

    Article  Google Scholar 

  34. Shen, D., Ip, H., Teoh, E.K.: An energy of assymmetry for accurate detection of global reflexion axes. Image Vis. Comput. 19, 283–297 (2001)

    Article  Google Scholar 

  35. Sirakov, N.M., Mete, M., Chakrader, N.S.: Automatic boundary detection and symmetry calculation in dermoscopy images of skin lesions. In: 18th IEEE International Conference on Image Processing, Brussels, pp. 1605–1608 (2011)

    Google Scholar 

  36. Soyer, H.P., Argenziano, G., Hofmann-Wellenhof, R., Zalaudek, I.: Dermoscopy: The Essentials, 2nd edn. Saunders Ltd., Philadelphia (2011)

    Google Scholar 

  37. Soyer, H.P., Argenziano, G., Zalaudek, I., Corona, R., Sera, F., Talamini, R., et al.: Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology 208(1), 27–31 (2004)

    Article  Google Scholar 

  38. Stolz, W., Riemann, A., Cognetta, A.B., Pillet, L., Abmayr, W., Hölzel, D., et al.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J. Dermatol. 4, 521–527 (1994)

    Google Scholar 

  39. Was, L., Milczarski, P., Stawska, Z., Wyczechowski, M., Kot, M., Wiak, S., Wozniacka, A., Pietrzak, L.: Analysis of dermatoses using segmentation and color hue in reference to skin lesions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 677–689. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_61

    Chapter  Google Scholar 

  40. Wighton, P., Lee, T.K., Lui, H., McLean, D.I., Atkins, M.S.: Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans. Inf Technol. Biomed. 15, 622–629 (2011)

    Article  Google Scholar 

  41. Xie, F., Bovik, A.C.: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recognit. 46, 1012–1019 (2013)

    Article  Google Scholar 

  42. Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Pattern Anal. Mach. Intell. 17(12), 1154–1166 (1995)

    Article  Google Scholar 

  43. Zavidovique, B., Di Gesù, V.: The S-kernel: ameasure of symmetry of objects. Pattern Recogn. 40, 839–852 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Milczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milczarski, P. (2018). Symmetry of Hue Distribution in the Images. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics