Abstract
In this paper estimators of nonstationary probability density function are proposed. Additionally, applying the trapezoidal method of numerical integration, the estimators of two information-theoretic measures are presented: the differential entropy and the Renyi’s quadratic differential entropy. Finally, using an analogous methodology, estimators of the Cauchy-Schwarz divergence and the probability density function divergence are proposed, which are used to measure the differences between two probability density functions. All estimators are proposed in two variants: one with the sliding window and one with the forgetting factor. Performance of all the estimators is verified using numerical simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bilski, J., Smolag, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)
Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)
Devi, V.S., Meena, L.: Parallel MCNN (PMCNN) with application to prototype selection on large and streaming data. J. Artif. Intell. Soft Comput. Res. 7(3), 155–169 (2017)
Devroye, L.P.: On the pointwise and the integral convergence of recursive kernel estimates of probability densities. Utilitas Math. (Canada) 15, 113–128 (1979)
Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)
Duda, P., Jaworski, M., Rutkowski, L.: On ensemble components selection in data streams scenario with reoccurring concept-drift. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1821–1827, November 2017
Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14(1), 153–158 (1969)
Galkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Trans. Autom. Control 31(8), 785–787 (1986)
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)
Greblicki, W., Pawlak, M.: Nonparametric System Identification. Cambridge University Press, Cambridge (2008)
Jaworski, M., Duda, P., Rutkowski, L.: On applying the Restricted Boltzmann Machine to active concept drift detection. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 3512–3519, November 2017
Jaworski, M., Duda, P., Rutkowski, L.: New splitting criteria for decision trees in stationary data streams. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–14 (2018)
Jaworski, M., Duda, P., Rutkowski, L., Najgebauer, P., Pawlak, M.: Heuristic regression function estimation methods for data streams with concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 726–737. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_65
Krzyzak, A., Pawlak, M.: The pointwise rate of convergence of the kernel regression estimate. J. Stat. Plan. Inference 16, 159–166 (1987)
Lemaire, V., Salperwyck, C., Bondu, A.: A survey on supervised classification on data streams. In: Zimányi, E., Kutsche, R.-D. (eds.) eBISS 2014. LNBIP, vol. 205, pp. 88–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17551-5_4
Napoli, C., Pappalardo, G., Tramontana, E., Nowicki, R.K., Starczewski, J.T., Woźniak, M.: Toward work groups classification based on probabilistic neural network approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 79–89. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_8
Notomista, G., Botsch, M.: A machine learning approach for the segmentation of driving maneuvers and its application in autonomous parking. J. Artif. Intell. Soft Comput. Res. 7(4), 243–255 (2017)
Parzen, E.: On estimation of probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)
Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: The Parzen kernel approach to learning in non-stationary environment. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 3319–3323 (2014)
Rutkowski, L.: Sequential estimates of a regression function by orthogonal series with applications in discrimination. In: Révész, P., Schatterer, L., Zolotarev, V.M. (eds.) The First Pannonian Symposium on Mathematical Statistics. LNS, vol. 8, pp. 236–244. Springer, New York (1981). https://doi.org/10.1007/978-1-4612-5934-3_21
Rutkowski, L.: Generalized regression neural networks in time-varying environment. IEEE Trans. Neural Netw. 15, 576–596 (2004)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1048–1059 (2015)
Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)
Yan, P.: Mapreduce and semantics enabled event detection using social media. J. Artif. Intell. Soft Comput. Res. 7(3), 201–213 (2017)
Yang, S., Sato, Y.: Swarm intelligence algorithm based on competitive predators with dynamic virtual teams. J. Artif. Intell. Soft Comput. Res. 7(2), 87–101 (2017)
Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) ISAT 2015. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28567-2_13
Acknowledgments
This work was supported by the Polish National Science Centre under Grant No. 2014/15/B/ST7/05264.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Jaworski, M., Najgebauer, P., Goetzen, P. (2018). Estimation of Probability Density Function, Differential Entropy and Other Relative Quantities for Data Streams with Concept Drift. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-91262-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91261-5
Online ISBN: 978-3-319-91262-2
eBook Packages: Computer ScienceComputer Science (R0)