Extreme Value Model for Volatility Measure in Machine Learning Ensemble | SpringerLink
Skip to main content

Extreme Value Model for Volatility Measure in Machine Learning Ensemble

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10841))

Included in the following conference series:

Abstract

This paper presents a method of model aggregation using multivariate decompositions where the main problem is to properly identify the components that carry noise. We develop a volatility measure which uses generalized extreme value decomposition. It is applied to destructive and constructive latent component classification. A practical experiment was conducted in order to validate the effectiveness of the introduced method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  2. Drucker, H.: Improving regressors using boosting techniques. In: ICML, vol. 97, pp. 107–115 (1997)

    Google Scholar 

  3. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–417 (1999)

    Article  MathSciNet  Google Scholar 

  4. Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Prediction improvement via smooth component analysis and neural network mixing. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 133–140. Springer, Heidelberg (2006). https://doi.org/10.1007/11840930_14

    Chapter  Google Scholar 

  5. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Noise detection for ensemble methods. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 471–478. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13208-7_59

    Chapter  Google Scholar 

  6. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Cambridge (2010)

    Google Scholar 

  7. Hyvärinen, A.: Independent component analysis: recent advances. Philos. Trans. R. Soc. A 371, 20110534 (2013)

    Article  MathSciNet  Google Scholar 

  8. Szupiluk, R., Wojewnik, P., Zabkowski, T.: The noise identification method based on divergence analysis in ensemble methods context. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 206–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20267-4_22

    Chapter  Google Scholar 

  9. Vasegi, S.V.: Advanced Signal Processing and Digital Noise Reduction. Wiley, Chichester (2008)

    Book  Google Scholar 

  10. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  11. McFadden, D.: Modeling the choice of residential location. Transp. Res. Rec. 673, 72–77 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Rubach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szupiluk, R., Rubach, P. (2018). Extreme Value Model for Volatility Measure in Machine Learning Ensemble. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics