Abstract
Robust delineation of tissue components in hematoxylin and eosin (H&E) stained slides is a critical step in quantifying tissue morphology. Fully convolutional neural networks (FCN) are ideally suited for automatic and efficient segmentation of tissue components in H&E slides. However, their performance relies on the network architecture, quality and depth of training. Here we introduce a set of 802 image tiles of colon biopsies from 2 subjects with inflammatory bowel disease (IBD) annotated for glandular epithelium (EP), gland lumen together with goblet cells (LG), and stroma (ST). We either trained the FCN-8s de-novo on our images (DN-FCN-8s) or pre-trained on the ImageNet dataset and fine-tuned on our images (FT-FCN-8s). For comparison, we used the U-Net trained de-novo. The training involved 700/802 images, leaving 102 images as a testing set. Ultimately, each model was validated in an independent digital biopsy slide. We also determined how the number of images used for training affects the performance of the model and observed a plateau in trainability at 700 images. In the testing set, U-Net and FT-FCN-8s achieved accuracies of 92.30% and 92.26% respectively. In the independent biopsy slide, U-Net demonstrated a segmentation accuracy of 88.64%, with F1-scores of 0.74 (EP), 0.92 (LG), and 0.93 (ST). The performance of the FT-FCN-8s was slightly worse, but the model required fewer images to reach a high classification performance. Our data demonstrate that all 3 FCNs are appropriate for segmentation of glands in biopsies from patients with IBD and open the door for quantification of IBD associated pathologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015)
BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation, pp. 460–468. Springer International Publishing, Cham (2016)
Bueno, G., Fernández-Carrobles, M.M., Deniz, O., García-Rojo, M.: New trends of emerging technologies in digital pathology. Pathobiology 83(2–3), 61–69 (2016)
Chollet, F., et al.: Keras (2015)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge 2011 (VOC2011) results. http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html
Feakins, R.M.: Inflammatory bowel disease biopsies: updated british society of gastroenterology reporting guidelines. J. Clin. Pathol. 66(12), 1005–1026 (2013)
Gertych, A., Ing, N., Ma, Z., Fuchs, T.J., Salman, S., Mohanty, S., Bhele, S., Velásquez-Vacca, A., Amin, M.B., Knudsen, B.S.: Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput. Med. Imaging Graph. 46(Part 2), 197–208 (2015)
Ing, N., Ma, Z., Li, J., Salemi, H., Arnold, C., Knudsen, B., Gertych, A.: Semantic segmentation for prostate cancer grading by convolutional neural networks. In: Proceedings of the SPIE Medical Imaging, vol. 10581, pp. 10581-1–10581-13 (2018). https://doi.org/10.1117/12.2293000
Ing, N., Salman, S., Ma, Z., Walts, A., Knudsen, B., Gertych, A.: Machine learning can reliably distinguish histological patterns of micropapillary and solid lung adenocarcinomas. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Proceedings of the Information Technologies in Medicine: 5th International Conference, ITIB 2016, Kamień Śląski, Poland, 20–22 June 2016, vol. 2, pp. 193–206. Springer International Publishing, Cham (2016)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
Kainz, P., Pfeiffer, M., Urschler, M.: Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization. PeerJ 5, e3874 (2017)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)
Li, W., Manivannan, S., Akbar, S., Zhang, J., Trucco, E., McKenna, S.: Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks, June 2016, pp. 1405–1408. IEEE (2016)
Litjens, G., Sánchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., van de Kaa, C.H., Bult, P., van Ginneken, B., van der Laak, J.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)
Litjens, G.J.S., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. CoRR abs/1702.05747 (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. CoRR abs/1605.06211 (2016). http://arxiv.org/abs/1605.06211
Sirinukunwattana, K., Pluim, J.P.W., Chen, H., Qi, X., Heng, P.A., Guo, Y.B., Wang, L.Y., Matuszewski, B.J., Bruni, E., Sanchez, U., Böhm, A., Ronneberger, O., Cheikh, B.B., Racoceanu, D., Kainz, P., Pfeiffer, M., Urschler, M., Snead, D.R.J., Rajpoot, N.M.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)
Stewart, S.L., Wike, J.M., Kato, I., Lewis, D.R., Michaud, F.: A population-based study of colorectal cancer histology in the united states, 1998–2001. Cancer 107(S5), 1128–1141 (2006)
Swiderska-Chadaj, Z., Markiewicz, T., Grala, B., Lorent, M., Gertych, A.: A deep learning pipeline to delineate proliferative areas of intracranial tumors in digital slides, pp. 448–458. Springer International Publishing, Cham (2017)
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1529–1537 (2015)
Zhou, Y., Xie, L., Fishman, E.K., Yuille, A.L.: Deep supervision for pancreatic cyst segmentation in abdominal CT scans, pp. 222–230. Springer International Publishing, Cham (2017)
Acknowledgement
This work was in part funded by seed grants from the Department of Surgery, The Biobank & Translation Research Core at Cedars-Sinai Medical Center, in part by Cedars-Sinai in support of CTSI grant UL1TR001881-01, and in part by the National Science Center (Poland) by the grant UMO-2016/23/N/ST6/02076. The authors would also like to thank The Inflammatory Bowel Disease Consortium for digital slides of colon specimens.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ma, Z. et al. (2019). Semantic Segmentation of Colon Glands in Inflammatory Bowel Disease Biopsies. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-91211-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91210-3
Online ISBN: 978-3-319-91211-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)