On Strong NP-Completeness of Rational Problems | SpringerLink
Skip to main content

On Strong NP-Completeness of Rational Problems

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

Abstract

The computational complexity of the partition, 0-1 subset sum, unbounded subset sum, 0-1 knapsack and unbounded knapsack problems and their multiple variants were studied in numerous papers in the past where all the weights and profits were assumed to be integers. We re-examine here the computational complexity of all these problems in the setting where the weights and profits are allowed to be any rational numbers. We show that all of these problems in this setting become strongly NP-complete and, as a result, no pseudo-polynomial algorithm can exist for solving them unless P = NP. Despite this result we show that they all still admit a fully polynomial-time approximation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babat, L.G.: Linear functions on n-dimensional unit cube. Doklady Akademii Nauk SSSR 221(4), 761–762 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)

    Google Scholar 

  4. Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: On the computational complexity of weighted voting games. Ann. Math. Artif. Intell. 56(2), 109–131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gallo, G., Hammer, P.L., Simeone, B.: Quadratic knapsack problems. In: Padberg, M.W. (ed.) Combinatorial Optimization, pp. 132–149. Springer, Heidelberg (1980). https://doi.org/10.1007/BFb0120892

    Chapter  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: “Strong” NP-completeness results: motivation, examples, and implications. J. ACM (JACM) 25(3), 499–508 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guéret, C., Prins, C.: A new lower bound for the open-shop problem. Ann. Oper. Res. 92, 165–183 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoogeveen, J.A., Oosterhout, H., van de Velde, S.L.: New lower and upper bounds for scheduling around a small common due date. Oper. Res. 42(1), 102–110 (1994)

    Article  MATH  Google Scholar 

  9. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM (JACM) 22(4), 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, D.S., Niemi, K.A.: On knapsacks, partitions, and a new dynamic programming technique for trees. Math. Oper. Res. 8(1), 1–14 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complex. Comput. Comput., pp. 85–103. Springer, Heidelberg (1972)

    Chapter  Google Scholar 

  12. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7

    Book  MATH  Google Scholar 

  13. Levin, L.A.: Universal sequential search problems. Problemy Peredachi Informatsii 9(3), 115–116 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Mathews, G.B.: On the partition of numbers. Proc. Lond. Math. Soc. 1(1), 486–490 (1897)

    MATH  Google Scholar 

  15. Mousa, M.A.A., Schewe, S., Wojtczak, D.: Optimal control for simple linear hybrid systems. In: Proceedings of TIME, pp. 12–20. IEEE Computer Society (2016)

    Google Scholar 

  16. Mousa, M.A.A., Schewe, S., Wojtczak, D.: Optimal control for multi-mode systems with discrete costs. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 77–96. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3_5

    Chapter  MATH  Google Scholar 

  17. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 13(2), 233–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pisinger, D.: An exact algorithm for large multiple knapsack problems. Eur. J. Oper. Res. 114(3), 528–541 (1999)

    Article  MATH  Google Scholar 

  19. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6(1), 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  20. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM (1978)

    Google Scholar 

  21. Silvano, M., Paolo, T.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Hoboken (1990)

    MATH  Google Scholar 

  22. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1), 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vazirani, V.V.: Approximation Algorithms. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04565-7

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers whose comments helped to improve this paper. This work was partially supported by the EPSRC through grants EP/M027287/1 (Energy Efficient Control) and EP/P020909/1 (Solving Parity Games in Theory and Practice).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Wojtczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wojtczak, D. (2018). On Strong NP-Completeness of Rational Problems. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics