Abstract
We consider the problem of converting a two-way alternating finite automaton (2AFA) with n states to a 2AFA accepting the complement of the original language. Complementing is trivial for halting 2AFAs, by inverting the roles of existential and universal decisions and the roles of accepting and rejecting states. However, since 2AFAs do not have resources to detect infinite loops by counting executed steps, the best construction known so far required \(\varOmega (4^n)\) states. Here we shall show that the cost of complementing is polynomial in n. This complementary simulation does not eliminate infinite loops.
V. Geffert—Supported by the Slovak grant contracts VEGA 1/0056/18 and APVV-15-0091.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout the paper, m denotes the length of the input and n the number of states.
- 2.
Such configuration has no sons and the entire subtree degenerates into a single node.
References
Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1976)
Berman, L., Chang, J., Ibarra, O., Ravikumar, B.: Some observations concerning alternating Turing machines using small space. Inf. Process. Lett. 25, 1–9 (1987). Corr. ibid. 27, p. 53 (1988)
Birget, J.: Partial orders on words, minimal elements of regular languages, and state complexity. Theor. Comput. Sci. 119, 267–291 (1993)
Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice Hall, Upper Saddle River (1996)
Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach. 28, 114–133 (1981)
Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445, 1–24 (2012)
Geffert, V.: Alternating space is closed under complement and other simulations for sublogarithmic space. Inf. Comput. 253, 163–178 (2017)
Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Inf. Comput. 205, 1173–1187 (2007)
Geffert, V., Okhotin, A.: Transforming two-way alternating finite automata to one-way nondeterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 291–302. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_25
Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston (2001)
Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_4
Kapoutsis, C.: Minicomplexity. J. Autom. Lang. Comb. 17, 205–224 (2012)
Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 595–606. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_53
Ladner, R., Lipton, R., Stockmeyer, L.: Alternating pushdown and stack automata. SIAM J. Comput. 13, 135–155 (1984)
Liśkiewicz, M., Reischuk, R.: Computing with sublogarithmic space. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II. Springer, New York (1997). ISBN 978-0-387-94973-4
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58355-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Geffert, V. (2018). Complement for Two-Way Alternating Automata. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-90530-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90529-7
Online ISBN: 978-3-319-90530-3
eBook Packages: Computer ScienceComputer Science (R0)