Complement for Two-Way Alternating Automata | SpringerLink
Skip to main content

Complement for Two-Way Alternating Automata

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

Abstract

We consider the problem of converting a two-way alternating finite automaton (2AFA) with n states to a 2AFA accepting the complement of the original language. Complementing is trivial for halting 2AFAs, by inverting the roles of existential and universal decisions and the roles of accepting and rejecting states. However, since 2AFAs do not have resources to detect infinite loops by counting executed steps, the best construction known so far required \(\varOmega (4^n)\) states. Here we shall show that the cost of complementing is polynomial in n. This complementary simulation does not eliminate infinite loops.

V. Geffert—Supported by the Slovak grant contracts VEGA 1/0056/18 and APVV-15-0091.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the paper, m denotes the length of the input and n the number of states.

  2. 2.

    Such configuration has no sons and the entire subtree degenerates into a single node.

References

  1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1976)

    MATH  Google Scholar 

  2. Berman, L., Chang, J., Ibarra, O., Ravikumar, B.: Some observations concerning alternating Turing machines using small space. Inf. Process. Lett. 25, 1–9 (1987). Corr. ibid. 27, p. 53 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birget, J.: Partial orders on words, minimal elements of regular languages, and state complexity. Theor. Comput. Sci. 119, 267–291 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  5. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach. 28, 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445, 1–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geffert, V.: Alternating space is closed under complement and other simulations for sublogarithmic space. Inf. Comput. 253, 163–178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Inf. Comput. 205, 1173–1187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geffert, V., Okhotin, A.: Transforming two-way alternating finite automata to one-way nondeterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 291–302. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_25

    Chapter  Google Scholar 

  10. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston (2001)

    MATH  Google Scholar 

  11. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_4

    Chapter  Google Scholar 

  12. Kapoutsis, C.: Minicomplexity. J. Autom. Lang. Comb. 17, 205–224 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 595–606. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_53

    Chapter  MATH  Google Scholar 

  14. Ladner, R., Lipton, R., Stockmeyer, L.: Alternating pushdown and stack automata. SIAM J. Comput. 13, 135–155 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liśkiewicz, M., Reischuk, R.: Computing with sublogarithmic space. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II. Springer, New York (1997). ISBN 978-0-387-94973-4

    Google Scholar 

  16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  17. Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58355-6

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viliam Geffert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geffert, V. (2018). Complement for Two-Way Alternating Automata. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics