Abstract
With the continuous growth of channels and content available in a typical interactive TV service, viewers have become increasingly frustrated, struggling to select which programs to watch. Content recommendation systems have been pointed out as a possible tool to mitigate this problem, especially when applied to on-demand content. However, in linear content, its success has been limited, either due to the specificities of this type of content or due to the little integration with normal consumption behaviors. Despite that, recommendation algorithms have undergone a set of enhancements in order to improve their effectiveness, particularly when applied to the world of linear content. These improvements, focused on the use of the visualization context, paired with machine learning techniques, can represent a big advantage in the quality of the suggestions to be proposed to the viewer. The area of user experience (UX) evaluation, in interactive TV, has been also a subject of ongoing research, extending beyond the traditional usability evaluation, pursuing other dimensions of analysis such as identification, emotion, stimulation, and aesthetics, as well as distinct moments of evaluation. This paper presents the proposal for the development of a recommendation system, based on the viewing context, and a methodology for evaluating the way this system influences the UX of the viewers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abreu, J., Nogueira, J., Becker, V., Cardoso, B.: Survey of Catch-up TV and other time-shift services: a comprehensive analysis and taxonomy of linear and nonlinear television. Telecommun. Syst. 64, 57–74 (2017). https://doi.org/10.1007/s11235-016-0157-3
Schwartz, B.: The Paradox of Choice: Why More is Less. HarperCollins, New York City (2004)
Vanattenhoven, J., Geerts, D.: Contextual aspects of typical viewing situations: a new perspective for recommending television and video content. Pers. Ubiquit. Comput. 19, 761–779 (2015). https://doi.org/10.1007/s00779-015-0861-0
Bernhaupt, R., Obrist, M., Weiss, A., et al.: Trends in the living room and beyond: results from ethnographic studies using creative and playful probing. Comput. Entertain. 6, 5:1–5:23 (2008). https://doi.org/10.1145/1350843.1350848
Digitalsmiths: Q4 2015 Video Trends Report - Consumer Behavior Across Pay-TV, VOD, PPV, OTT, TVE, Connected Devices, and Content Discovery (2015)
Turrin, R., Condorelli, A., Cremonesi, P., Pagano, R.: Time-based TV programs prediction. In: 1st Workshop on Recommender Systems for Television and Online Video at ACM RecSys (2014)
Churchill, E.F.: Putting the person back into personalization. Interactions 20, 12–15 (2013). https://doi.org/10.1145/2504847
Aharon, M., Hillel, E., Kagian, A., Lempel, R., Makabee, H., Nissim, R.: Watch-it-next: a contextual TV recommendation system. In: Bifet, A., May, M., Zadrozny, B., Gavalda, R., Pedreschi, D., Bonchi, F., Cardoso, J., Spiliopoulou, M. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 180–195. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23461-8_12
Gonçalves, D., Costa, M., Couto, F.M.: A flexible recommendation system for cable TV. In: 3rd Workshop on Recommendation Systems for Television and online Video, RecSysTV 2016 (2016)
Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst. Appl. 97, 205–227 (2018). https://doi.org/10.1016/j.eswa.2017.12.020
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_6
Zhang, T., Iyengar, V.S.: Recommender systems using linear classifiers. J. Mach. Learn. Res. 2, 313–334 (2002)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986). https://doi.org/10.1023/A:1022643204877
Ericsson AB Mediaroom—Ericsson Media Solutions. https://mediasolutions.ericsson.com/products/mediaroom/. Accessed 8 Jan 2018
Zibriczky, D., Petres, Z., Waszlavik, M., Tikk, D.: EPG content recommendation in large scale: a case study on interactive TV platform. In: 2013 12th International Conference on Machine Learning and Applications, pp. 315–320 (2013)
Buczak, A.L., Zimmerman, J., Kurapati, K.: Personalization: improving ease-of-use, trust and accuracy of a TV show recommender. In: Proceedings of AH 2002 Workshop on Personalization in Future TV (2002)
Chang, N., Irvan, M., Terano, T.: A TV program recommender framework. Proc. Comput. Sci. 22, 561–570 (2013). https://doi.org/10.1016/j.procs.2013.09.136
Swearingen, K., Sinha, R.: Interaction design for recommender systems. Des. Interact. Syst. 6, 312–334 (2002)
International Organization for Standardization: ISO 9241-210: ergonomics of human–system interaction - human-centred design for interactive systems. Int. Organ. Stand. 2010, 32 (2010). https://doi.org/10.1039/c0dt90114h
Jenner, M.: Binge-watching: video-on-demand, quality TV and mainstreaming fandom. Int. J. Cult. Stud. 20, 304–320 (2017). https://doi.org/10.1177/1367877915606485
Abreu, J., Almeida, P., Silva, T.: A UX evaluation approach for second-screen applications. Commun. Comput. Inf. Sci. 605, 105–120 (2016). https://doi.org/10.1007/978-3-319-38907-3_9
Bernhaupt, R., Pirker, M.: Evaluating user experience for interactive television: towards the development of a domain-specific user experience questionnaire. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8118, pp. 642–659. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40480-1_45
Drouet, D., Bernhaupt, R.: User experience evaluation methods: lessons learned from an interactive TV case-study. In: Bogdan, C., et al. (eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 351–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44902-9_22
Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189, 4–7 (1996)
Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Szwillus, G., Ziegler, J. (eds.) 2003 Interaktion Bewegung Mensch & Computer, pp. 187–196. Vieweg + Teubner Verlag, Wiesbaden (2003)
Hassenzahl, M.: The interplay of beauty, goodness, and usability in interactive products. Hum.-Comput. Interact. 19, 319–349 (2008). https://doi.org/10.1207/s15327051hci1904_2
Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994). https://doi.org/10.1016/0005-7916(94)90063-9
Roto, V., Law, E., Vermeeren, A., Hoonhout, J.: User experience white paper. Bringing clarity to concept user experience, pp. 1–12 (2011)
Ferraz de Abreu, J., Almeida, P., Beça, P.: InApp questions – an approach for contextual evaluation of applications. In: Abásolo, M.J., Almeida, P., Pina Amargós, J. (eds.) jAUTI 2016. CCIS, vol. 689, pp. 163–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63321-3_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Cardoso, B., Abreu, J. (2018). Machine Learning the TV Consumption: A Basis for a Recommendation System. In: Abásolo, M., Abreu, J., Almeida, P., Silva, T. (eds) Applications and Usability of Interactive Television. jAUTI 2017. Communications in Computer and Information Science, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-319-90170-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-90170-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90169-5
Online ISBN: 978-3-319-90170-1
eBook Packages: Computer ScienceComputer Science (R0)