Abstract
In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. We also present the first constructive polynomial-time algorithm for the recognition of 3-letter graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, M.H., Atkinson, M.D., Bouvel, M., Ruskuc, N., Vatter, V.: Geometric grid classes of permutations. Trans. Am. Math. Soc. 365, 5859–5881 (2013)
Atminas, A., Lozin, V.: Labelled induced subgraphs and well-quasi-ordering. Order 32(3), 313–328 (2015)
Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Theory 14(4), 427–435 (1990)
Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)
Korpelainen, N., Lozin, V.: Two forbidden induced subgraphs and well-quasi-ordering. Discrete Math. 311(16), 1813–1822 (2011)
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)
Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics: Annals of Discrete Mathematics, vol. 56. North-Holland Publishing Co., Amsterdam (1995). xiv+543 pp.
Nešetřil, J.: On ordered graphs and graph orderings. Discrete Appl. Math. 51(1–2), 113–116 (1994)
Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete Math. 244, 375–388 (2002)
Acknowledgment
Vadim Lozin and Viktor Zamaraev acknowledge support of EPSRC, grant EP/L020408/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Alecu, B., Lozin, V., Zamaraev, V., de Werra, D. (2018). Letter Graphs and Geometric Grid Classes of Permutations: Characterization and Recognition. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-78825-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78824-1
Online ISBN: 978-3-319-78825-8
eBook Packages: Computer ScienceComputer Science (R0)