Letter Graphs and Geometric Grid Classes of Permutations: Characterization and Recognition | SpringerLink
Skip to main content

Letter Graphs and Geometric Grid Classes of Permutations: Characterization and Recognition

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10765))

Included in the following conference series:

Abstract

In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. We also present the first constructive polynomial-time algorithm for the recognition of 3-letter graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, M.H., Atkinson, M.D., Bouvel, M., Ruskuc, N., Vatter, V.: Geometric grid classes of permutations. Trans. Am. Math. Soc. 365, 5859–5881 (2013)

    Article  MathSciNet  Google Scholar 

  2. Atminas, A., Lozin, V.: Labelled induced subgraphs and well-quasi-ordering. Order 32(3), 313–328 (2015)

    Article  MathSciNet  Google Scholar 

  3. Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Theory 14(4), 427–435 (1990)

    Article  MathSciNet  Google Scholar 

  4. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)

    Article  MathSciNet  Google Scholar 

  5. Korpelainen, N., Lozin, V.: Two forbidden induced subgraphs and well-quasi-ordering. Discrete Math. 311(16), 1813–1822 (2011)

    Article  MathSciNet  Google Scholar 

  6. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MathSciNet  Google Scholar 

  7. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics: Annals of Discrete Mathematics, vol. 56. North-Holland Publishing Co., Amsterdam (1995). xiv+543 pp.

    MATH  Google Scholar 

  8. Nešetřil, J.: On ordered graphs and graph orderings. Discrete Appl. Math. 51(1–2), 113–116 (1994)

    Article  MathSciNet  Google Scholar 

  9. Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete Math. 244, 375–388 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Vadim Lozin and Viktor Zamaraev acknowledge support of EPSRC, grant EP/L020408/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lozin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alecu, B., Lozin, V., Zamaraev, V., de Werra, D. (2018). Letter Graphs and Geometric Grid Classes of Permutations: Characterization and Recognition. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78825-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78824-1

  • Online ISBN: 978-3-319-78825-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics