Abstract
We present a methodology and a corresponding system to bridge the gap between prioritization tools with fixed target and unrestricted semantic queries. We describe the advantages of an intermediate level of networks of similarities and relevances: (1) it is derived from raw, linked data (2) it ensures efficient inference over partial, inconsistent and noisy cross-domain, cross-species linked open data, (3) preserved transparency and decomposability of the inference allows semantic filters and preferences to control and focus of the inference, (4) high-dimensional, weakly significant evidences, such as overall summary statistics could also be used in the inference, (5) quantitative and rank based inference primitives can be defined, and (6) queries are unrestricted, e.g. prioritized variables, and (7) it allows wider access for non-technical experts. We provide a step-by-step guide for the methodology using a macular degeneration model, including drug, target and disease domains. The system and the model presented in the paper are available at bioinformatics.mit.bme.hu/QSF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhu, Z., et al.: Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48(5), 481–487 (2016)
Chen, H., Ding, L., Wu, Z., Yu, T., Dhanapalan, L., Chen, J.Y.: Semantic web for integrated network analysis in biomedicine. Briefings Bioinform. 10(2), 177–192 (2009)
Williams, A.J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen, E.L., Evelo, C.T., Blomberg, N., Ecker, G., Goble, C., Mons, B.: Open PHACTS: semantic interoperability for drug discovery. Drug Discov. Today 17(21–22), 1188–1198 (2012)
Chen, B., Wang, H., Ding, Y., Wild, D.: Semantic breakthrough in drug discovery. Synth. Lect. Semant. Web 4(2), 1–142 (2014)
Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.W., Goble, C.A., Brass, A.: TAMBIS: transparent access to multiple bioinformatics information sources. Bioinformatics 16(2), 184–186 (2000)
Karim, M.R., Michel, A., Zappa, A., Baranov, P., Sahay, R., Rebholz-Schuhmann, D.: Improving data workflow systems with cloud services and use of open data for bioinformatics research. Briefings Bioinform. (2017). bbx039
Ginn, C.M., Willett, P., Bradshaw, J.: Combination of molecular similarity measures using data fusion. Perspect. Drug Discov. Des. 20, 1–16 (2000). Virtual Screening: An Alternative or Complement to High Throughput Screening? Springer
Lanckriet, G.R., De Bie, T., Cristianini, N., Jordan, M.I., Noble, W.S.: A statistical framework for genomic data fusion. Bioinformatics 20(16), 2626–2635 (2004)
Tranchevent, L.C., Ardeshirdavani, A., ElShal, S., Alcaide, D., Aerts, J., Auboeuf, D., Moreau, Y.: Candidate gene prioritization with endeavour. Nucleic Acids Res. 44(W1), W117–W121 (2016)
Province, M.A., Borecki, I.B.: Gathering the gold dust: methods for assessing the aggregate impact of small effect genes in genomic scans. Pac. Symp. Biocomput. 13, 190–200 (2008)
Nakka, P., Raphael, B.J., Ramachandran, S.: Gene and network analysis of common variants reveals novel associations in multiple complex diseases. Genetics 204(2), 783–798 (2016)
Callahan, A., Cruz-Toledo, J., Ansell, P., Dumontier, M.: Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 200–212. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_14
Chen, B., Dong, X., Jiao, D., Wang, H., Zhu, Q., Ding, Y., Wild, D.J.: Chem2bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinform. 11(1), 255 (2010)
Waagmeester, A., Kutmon, M., Riutta, A., Miller, R., Willighagen, E.L., Evelo, C.T., Pico, A.R.: Using the semantic web for rapid integration of wikipathways with other biological online data resources. PLoS Comput. Biol. 12(6), e1004989 (2016)
Swainston, N., Batista-Navarro, R., Carbonell, P., Dobson, P.D., Dunstan, M., Jervis, A.J., Vinaixa, M., Williams, A.R., Ananiadou, S., Faulon, J.L., et al.: biochem4j: Integrated and extensible biochemical knowledge through graph databases. PLoS ONE 12(7), e0179130 (2017)
Queralt-Rosinach, N., Piñero, J., Bravo, À., Sanz, F., Furlong, L.I.: DisGeNET-RDF: harnessing the innovative power of the semantic web to explore the genetic basis of diseases. Bioinformatics 32(14), 2236–2238 (2016)
Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., Furlong, L.I.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45(D1), D833–D839 (2017)
Gray, A.J., Groth, P., Loizou, A., Askjaer, S., Brenninkmeijer, C., Burger, K., Chichester, C., Evelo, C.T., Goble, C., Harland, L., et al.: Applying linked data approaches to pharmacology: architectural decisions and implementation. Semant. Web 5(2), 101–113 (2014)
Beek, W., Rietveld, L., Schlobach, S., van Harmelen, F.: LOD Laundromat: why the semantic web needs centralization (even if we don’t like it). IEEE Internet Comput. 20(2), 78–81 (2016)
Dong, X., Ding, Y., Wang, H., Chen, B., Wild, D.: Chem2Bio2RDF dashboard: ranking semantic associations in systems chemical biology space. Future Web Collaboratice Sci. (FWCS) WWW (2010)
Kamdar, M.R., Musen, M.A.: PhLeGrA: graph analytics in pharmacology over the web of life sciences linked open data. In: Proceedings of the 26th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 321–329 (2017)
Soldatova, L.N., Rzhetsky, A., De Grave, K., King, R.D.: Representation of probabilistic scientific knowledge. J. Biomed. Semant. 4(Suppl. 1), S7 (2013)
Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7(1), 496 (2011)
Callahan, A., Cifuentes, J.J., Dumontier, M.: An evidence-based approach to identify aging-related genes in caenorhabditis elegans. BMC Bioinform. 16(1), 40 (2015)
Fu, G., Ding, Y., Seal, A., Chen, B., Sun, Y., Bolton, E.: Predicting drug target interactions using meta-path-based semantic network analysis. BMC Bioinform. 17(1), 160 (2016)
Abelló, A., et al.: Fusion cubes: towards self-service business intelligence (2013)
Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic web 8(3), 489–508 (2017)
Domingos, P., Lowd, D., Kok, S., Poon, H., Richardson, M., Singla, P.: Just add weights: Markov logic for the semantic web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 1–25. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89765-1_1
De Bie, T., Tranchevent, L.C., Van Oeffelen, L.M., Moreau, Y.: Kernel-based data fusion for gene prioritization. Bioinformatics 23(13), i125–i132 (2007)
Yates, A., Akanni, W., Amode, M.R., Barrell, D., Billis, K., Carvalho-Silva, D., Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., et al.: Ensembl 2016. Nucleic Acids Res. 44(D1), D710–D716 (2015)
Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., Gaulton, A., Gehant, S., Laibe, C., Redaschi, N., Wimalaratne, S.M., Martin, M., Le Novère, N., Parkinson, H., Birney, E., Jenkinson, A.M.: The EBI RDF platform: linked open data for the life sciences. Bioinformatics 30(9), 1338–1339 (2014)
Caniza, H., Romero, A.E., Heron, S., Yang, H., Devoto, A., Frasca, M., Mesiti, M., Valentini, G., Paccanaro, A.: GOssTO: a stand-alone application and a web tool for calculating semantic similarities on the gene ontology. Bioinformatics 30(15), 2235–2236 (2014)
MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J., et al.: The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res. 45(D1), D896–D901 (2017)
Twigger, S., Lu, J., Shimoyama, M., Chen, D., Pasko, D., Long, H., Ginster, J., Chen, C.F., Nigam, R., Kwitek, A., et al.: Rat genome database (RGD): mapping disease onto the genome. Nucleic Acids Res. 30(1), 125–128 (2002)
Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42(D1), D1091–D1097 (2013)
Thomas, D.W., Burns, J., Audette, J., Carrol, A., Dow-Hygelund, C., Hay, M.: Clinical Development Success Rates 2006–2015. Biomedtracker/BIO/Amplion, San Diego, Washington, DC, Bend (2016)
Acknowledgments
The research has been supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013) and by OTKA 112915. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 633589. This publication reflects only the authors’ views and the Commission is not responsible for any use that may be made of the information it contains.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gezsi, A., Bruncsics, B., Guta, G., Antal, P. (2018). Constructing a Quantitative Fusion Layer over the Semantic Level for Scalable Inference. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-78723-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78722-0
Online ISBN: 978-3-319-78723-7
eBook Packages: Computer ScienceComputer Science (R0)