Bi-cluster Parallel Computing in Bioinformatics – Performance and Eco-Efficiency | SpringerLink
Skip to main content

Bi-cluster Parallel Computing in Bioinformatics – Performance and Eco-Efficiency

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Abstract

The paper discusses the selected bi-clustering algorithms in terms of energy efficiency. We demonstrate the need for the power aware software development, elaborate bi-clustering methods and applications, and describe the experimental computational cluster with a custom built energy measurement instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ICT for Sustainable Growth. http://ec.europa.eu/information_society/activities/sustainable_growth/ict_sector/index_en.htm. Accessed 03 May 2017

  2. Ardito, L., Morisio, M.: Green IT - available data and guidelines for reducing energy consumption in IT systems. Sust. Comput.: Inform. Syst. 4(1), 24–32 (2014)

    Google Scholar 

  3. Ben-Dor, A., et al.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)

    Article  Google Scholar 

  4. de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73922-7_8

    Chapter  Google Scholar 

  5. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39 (1977)

    Google Scholar 

  7. Feng, W.: Green destiny + mpiBLAST = bioinfomagic. In: 10th International Conference on Parallel Computing (ParCo), September 2003

    Google Scholar 

  8. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)

    Article  MATH  Google Scholar 

  9. Foszner, P., Polański, A.: Aspectanalyzer-distributed system for bi-clustering analysis. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds.) Man-Machine Interactions 4. AISC, vol. 391, pp. 411–420. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-23437-3_35

  10. Ganote, C.L., et al.: A voice for bioinformatics. In: Proceedings of the PEARC 2017, pp. 36:1–36:5 (2017)

    Google Scholar 

  11. Gelenbe, E., Caseau, Y.: The impact of information technology on energy consumption and carbon emissions. Ubiquity 2015(June), 1:1–1:15 (2015)

    Google Scholar 

  12. Hanczar, B., Nadif, M.: Ensemble methods for biclustering tasks. Pattern Recogn. 45(11), 3938–3949 (2012)

    Article  Google Scholar 

  13. Hartigan, J.A.: Direct clustering of a data matrix. JASA 67(337), 123–129 (1972)

    Article  Google Scholar 

  14. Hibbs, M.A., et al.: Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23(20), 2692–2699 (2007)

    Article  Google Scholar 

  15. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer 41, 33–38 (2008)

    Article  Google Scholar 

  16. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. J. 177–196 (2001)

    Google Scholar 

  17. Kerr, G., et al.: Techniques for clustering gene expression data. Comput. Biol. Med. 38(3), 283–293 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kluger, Y., et al.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)

    Article  Google Scholar 

  19. Kong, M., Partoens, B., Peeters, F.: Structural, dynamical and melting properties of two-dimensional clusters of complex plasmas. New J. Phys. 5(1), 23 (2003)

    Article  Google Scholar 

  20. Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Statistica sinica 61–86 (2002)

    Google Scholar 

  21. Lee, D., Seung, S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2000)

    Google Scholar 

  22. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 24–45 (2004)

    Google Scholar 

  23. Mair, J., et al.: Myths in power estimation with performance monitoring counters. Sust. Comput.: Inform. Syst. 4(2), 83–93 (2014)

    Google Scholar 

  24. Markatos, E.P., LeBlanc, T.J.: Load balancing vs. locality management in shared-memory multiprocessors. Technical report, Rochester, NY, USA (1991)

    Google Scholar 

  25. Maulik, U., et al.: Multiobjective fuzzy biclustering in microarray data: method and a new performance measure. In: IEEE World Congress on Computational Intelligence Evolutionary Computation, CEC 2008, pp. 1536–1543. IEEE (2008)

    Google Scholar 

  26. Michalak, M., Lachor, M., Polański, A.: HiBi – the algorithm of biclustering the discrete data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 760–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_66

    Chapter  Google Scholar 

  27. Myers, J.L., Well, A.D.: Research Design and Statistical Analysis (ed.) (2003)

    Google Scholar 

  28. Orzechowski, P.: Proximity measures and results validation in biclustering – a survey. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 206–217. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_20

    Chapter  Google Scholar 

  29. Pascual-Montano, A., et al.: Non-smooth non-negative matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell. 403–415 (2006)

    Google Scholar 

  30. Rzepka, K., et al.: Design of portable power consumption measuring system for green computing needs. Studia Informatica (in press). arXiv:1512.08201 [cs]

  31. Skurowski, P., Staniszewski, M.: Parallel distance matrix computation for matlab data mining. In: AIP Conference Proceedings, vol. 1738, no. 1, p. 070004 (2016)

    Google Scholar 

  32. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl. 1), S136–S144 (2002)

    Article  Google Scholar 

  33. Tanay, A., et al.: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. PNAS 101(9), 2981–2986 (2004)

    Article  Google Scholar 

  34. Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Sig. Proc. Syst. 1520–1527 (2010)

    Google Scholar 

  35. Yang, J., et al.: \(\delta \)-clusters: capturing subspace correlation in a large data set. In: Proceedings of 18th International Conference Data Engineering, pp. 517–528. IEEE (2002)

    Google Scholar 

Download references

Acknowledgment

This work is supported by Silesian Univ. of Technology grants: P. Foszner – 02/020/BKM_17/0115, P. Skurowski – 02/020/BK_17/0105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Foszner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foszner, P., Skurowski, P. (2018). Bi-cluster Parallel Computing in Bioinformatics – Performance and Eco-Efficiency. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics