Abstract
The paper discusses the selected bi-clustering algorithms in terms of energy efficiency. We demonstrate the need for the power aware software development, elaborate bi-clustering methods and applications, and describe the experimental computational cluster with a custom built energy measurement instrumentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ICT for Sustainable Growth. http://ec.europa.eu/information_society/activities/sustainable_growth/ict_sector/index_en.htm. Accessed 03 May 2017
Ardito, L., Morisio, M.: Green IT - available data and guidelines for reducing energy consumption in IT systems. Sust. Comput.: Inform. Syst. 4(1), 24–32 (2014)
Ben-Dor, A., et al.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)
de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73922-7_8
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp. 93–103 (2000)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39 (1977)
Feng, W.: Green destiny + mpiBLAST = bioinfomagic. In: 10th International Conference on Parallel Computing (ParCo), September 2003
Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)
Foszner, P., Polański, A.: Aspectanalyzer-distributed system for bi-clustering analysis. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds.) Man-Machine Interactions 4. AISC, vol. 391, pp. 411–420. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-23437-3_35
Ganote, C.L., et al.: A voice for bioinformatics. In: Proceedings of the PEARC 2017, pp. 36:1–36:5 (2017)
Gelenbe, E., Caseau, Y.: The impact of information technology on energy consumption and carbon emissions. Ubiquity 2015(June), 1:1–1:15 (2015)
Hanczar, B., Nadif, M.: Ensemble methods for biclustering tasks. Pattern Recogn. 45(11), 3938–3949 (2012)
Hartigan, J.A.: Direct clustering of a data matrix. JASA 67(337), 123–129 (1972)
Hibbs, M.A., et al.: Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23(20), 2692–2699 (2007)
Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer 41, 33–38 (2008)
Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. J. 177–196 (2001)
Kerr, G., et al.: Techniques for clustering gene expression data. Comput. Biol. Med. 38(3), 283–293 (2008)
Kluger, Y., et al.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)
Kong, M., Partoens, B., Peeters, F.: Structural, dynamical and melting properties of two-dimensional clusters of complex plasmas. New J. Phys. 5(1), 23 (2003)
Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Statistica sinica 61–86 (2002)
Lee, D., Seung, S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2000)
Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 24–45 (2004)
Mair, J., et al.: Myths in power estimation with performance monitoring counters. Sust. Comput.: Inform. Syst. 4(2), 83–93 (2014)
Markatos, E.P., LeBlanc, T.J.: Load balancing vs. locality management in shared-memory multiprocessors. Technical report, Rochester, NY, USA (1991)
Maulik, U., et al.: Multiobjective fuzzy biclustering in microarray data: method and a new performance measure. In: IEEE World Congress on Computational Intelligence Evolutionary Computation, CEC 2008, pp. 1536–1543. IEEE (2008)
Michalak, M., Lachor, M., Polański, A.: HiBi – the algorithm of biclustering the discrete data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 760–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_66
Myers, J.L., Well, A.D.: Research Design and Statistical Analysis (ed.) (2003)
Orzechowski, P.: Proximity measures and results validation in biclustering – a survey. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 206–217. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_20
Pascual-Montano, A., et al.: Non-smooth non-negative matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell. 403–415 (2006)
Rzepka, K., et al.: Design of portable power consumption measuring system for green computing needs. Studia Informatica (in press). arXiv:1512.08201 [cs]
Skurowski, P., Staniszewski, M.: Parallel distance matrix computation for matlab data mining. In: AIP Conference Proceedings, vol. 1738, no. 1, p. 070004 (2016)
Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl. 1), S136–S144 (2002)
Tanay, A., et al.: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. PNAS 101(9), 2981–2986 (2004)
Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Sig. Proc. Syst. 1520–1527 (2010)
Yang, J., et al.: \(\delta \)-clusters: capturing subspace correlation in a large data set. In: Proceedings of 18th International Conference Data Engineering, pp. 517–528. IEEE (2002)
Acknowledgment
This work is supported by Silesian Univ. of Technology grants: P. Foszner – 02/020/BKM_17/0115, P. Skurowski – 02/020/BK_17/0105.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Foszner, P., Skurowski, P. (2018). Bi-cluster Parallel Computing in Bioinformatics – Performance and Eco-Efficiency. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-78054-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78053-5
Online ISBN: 978-3-319-78054-2
eBook Packages: Computer ScienceComputer Science (R0)