Abstract
In this paper, a dense frame-to-model Simultaneous Localization And Mapping (SLAM) with an RGB-D camera is proposed, which achieves a more accurate trajectory in contrast to traditional frame-to-model methods. In the frontend, dense photometric information and geometric information are combined to perform a more robust tracking. In the backend, we add volume to loop closure detection to reject false loop. A novel volume-camera pose graph is proposed to effectively reduce drift. Experimental results on some RGB-D SLAM datasets show a reduction of global trajectory error by 18.60% in comparison to Kinituous, 84.43% in comparison to Kinfu.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1691–1696 (2012)
Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D mapping with an RGB-D camera. IEEE Trans. Rob. 30(1), 177–187 (2014)
Galvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Rob. 28(5), 1188–1197 (2012)
Glvez-López, D., Tards, J.D.: Real-time loop detection with bags of binary words. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 51–58 (2011)
Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2100–2106 (2013)
Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3748–3754 (2013)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3607–3613 (2011)
Li, J.N., Wang, L.H., Li, Y., Zhang, J.F., Li, D.X., Zhang, M.: Local optimized and scalable frame-to-model SLAM. Multimedia Tools Appl. 75(14), 8675–8694 (2016)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011)
Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (PCL), pp. 1–4 (2011)
Stückler, J., Behnke, S.: Integrating depth and color cues for dense multi-resolution scene mapping using RGB-D cameras. In: 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 162–167 (2012)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)
Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J.J., McDonald, J.: Real-time large-scale dense RGB-D SLAM with volumetric fusion. Int. J. Robot. Res. 34(4–5), 598–626 (2015)
Acknowledgments
This work is supported in part by the National Natural Science Foundation of China (Grant No. 61401390).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ye, X., Li, J., Wang, L., Li, D., Zhang, M. (2018). Dense Frame-to-Model SLAM with an RGB-D Camera. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_56
Download citation
DOI: https://doi.org/10.1007/978-3-319-77380-3_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77379-7
Online ISBN: 978-3-319-77380-3
eBook Packages: Computer ScienceComputer Science (R0)