Designing a Testbed Infrastructure for Experimental Validation and Trialing of 5G Vertical Applications | SpringerLink
Skip to main content

Designing a Testbed Infrastructure for Experimental Validation and Trialing of 5G Vertical Applications

  • Conference paper
  • First Online:
Cognitive Radio Oriented Wireless Networks (CrownCom 2017)

Abstract

This paper describes the design of a testbed for experimental validation and trialing of 5G vertical applications. The paper introduces the challenges that 5G aims to solve with regard to the spectrum demand and the convergence of different wireless communication services. The European-level 5G research program 5G Public Private Partnership (5G-PPP) is a coordinated European approach to secure European leadership in 5G. The 5G-PPP has developed a 5G Pan-European Trials Roadmap, which includes a comprehensive strategy for coordinated international preliminary and pre-commercial trials. The objective in designing Turku University of Applied Sciences (TUAS) testbed infrastructure in Turku, Finland, has been in building a testbed that can be used to contribute to the development, standardization and trialing of wireless communications in a diverse selection of scenarios and vertical applications. In addition, the paper describes the spectrum monitoring capabilities at TUAS facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lien, S.Y., Shieh, S.L., Huang, Y., Su, B., Hsu, Y.L., Wei, H.Y.: 5G new radio: waveform, frame structure, multiple access, and initial access. IEEE Commun. Mag. 55(6), 64–71 (2017)

    Article  Google Scholar 

  2. 5G-PPP Architecture Working Group: View on 5G Architecture, Version 1.0, July 2016

    Google Scholar 

  3. The 5G Infrastructure Public Private Partnership. https://5g-ppp.eu/

  4. European Commission: COM (2016) 588 final: 5G for Europe: An Action Plan, September 2016

    Google Scholar 

  5. 5G Infrastructure Association (5G-IA): 5G Pan-European trials roadmap version 1.0, May 2017

    Google Scholar 

  6. Tekes. https://www.tekes.fi/en/

  7. Tekes: 5thGear programme, 2014–2019. https://www.tekes.fi/en/programmes-and-services/tekes-programmes/5thgear/projects/

  8. 5G Test Network Finland. http://5gtnf.fi/

  9. 3GPP: 3GPP TS 22.261 V16.0.0: Technical Specification Group Services and System Aspects; Service requirements for the 5G system; Stage 1 (Release 16), June 2017

    Google Scholar 

  10. NGMN Alliance: NGMN 5G White Paper v1.0, February 2015

    Google Scholar 

  11. Celtic-Plus: The B21C project (Broadcast for the 21st Century). https://www.celticplus.eu/project-wing-tv/

  12. Celtic-Plus: The B21C project (Broadcast for the 21st Century). https://www.celticplus.eu/project-b21c/

  13. Celtic-Plus: The ENGINES project. https://www.celticplus.eu/project-engines/

  14. Kalliovaara, J.: Field measurements in determining incumbent spectrum utilization and protection criteria in wireless co-existence studies. Ph.D. dissertation, University of Turku (2017). ISBN 978-951-29-6825-1

    Google Scholar 

  15. Kalliovaara, J., Ekman, R., Talmola, P., Höyhtyä, M., Jokela, T., Poikonen, J., Paavola, J., Jakobsson, M.: Coexistence of DTT and mobile broadband: a survey and guidelines for field measurements. Wirel. Commun. Mob. Comput. 2017, 19 p. (2017). https://doi.org/10.1155/2017/1563132. Article no. 1563132

    Article  Google Scholar 

  16. Kalliovaara, J., Paavola, J., Ekman, R., Kivinen, A., Talmola, P.: TV White Space Network Interference Measurements and Application Pilot Trials. Final report from field measurement campaigns and application pilot trials in WISE projects during 2011–2014, November 2016

    Google Scholar 

  17. White Space test environment for broadcast frequencies (WISE) projects. http://wise.turkuamk.fi

  18. Holland, O., Sastry, N., Ping, S., Knopp, R., Kaltenberger, F., Nussbaum, D., Hallio, J., Jakobsson, M., Auranen, J., Ekman, R., Paavola, J., Kivinen, A., Tran, H.N., Ishizu, K., Harada, H., Chawdhry, P., Chareau, J.M., Bishop, J., Bavaro, M., Anguili, E., Gao, Y., Dionisio, R., Marques, P., Kokkinen, H., Luukkonen, O.: A series of trials in the UK as part of the Ofcom TV white spaces pilot. In: 1st International Workshop on Cognitive Cellular Systems (CCS), pp. 1–5, September 2014

    Google Scholar 

  19. Holland, O., Ping, S., Sastry, N., Chawdhry, P., Chareau, J.M., Bishop, J., Xing, H., Taskafa, S., Aijaz, A., Bavaro, M., Viaud, P., Pinato, T., Anguili, E., Akhavan, M.R., McCann, J., Gao, Y., Qin, Z., Zhang, Q., Knopp, R., Kaltenberger, F., Nussbaum, D., Dionisio, R., Ribeiro, J., Marques, P., Hallio, J., Jakobsson, M., Auranen, J., Ekman, R., Kokkinen, H., Paavola, J., Kivinen, A., Solc, T., Mohorcic, M., Tran, H.N., Ishizu, K., Matsumura, T., Ibuka, K., Harada, H., Mizutani, K.: Some initial results and observations from a series of trials within the Ofcom TV white spaces pilot. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–7, May 2015

    Google Scholar 

  20. Ojaniemi, J., Kalliovaara, J., Alam, A., Poikonen, J., Wichman, R.: Optimal field measurement design for radio environment mapping. In: 2013 47th Annual Conference on Information Sciences and Systems (CISS) (2013)

    Google Scholar 

  21. Ojaniemi, J., Kalliovaara, J., Poikonen, J., Wichman, R.: A practical method for combining multivariate data in radio environment mapping. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 729–733 (2013)

    Google Scholar 

  22. Talmola, P., Kalliovaara, J., Paavola, J., Ekman, R., Vainisto, A., Aurala, N., Kokkinen, H., Heiska, K., Wichman, R., Poikonen, J.: Field measurements of WSD-DTT protection ratios over outdoor and indoor reference geometries. In: 2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), June 2012

    Google Scholar 

  23. Paavola, J., Kalliovaara, J., Poikonen, J.: Section 6.1.2 ‘TVWS Coexistence with Incumbents’. In: Medeisis, A., Holland, O. (eds.) Cognitive Radio Policy and Regulation: Techno-Economic Studies to Facilitate Dynamic Spectrum Access. Signals and Communication Technology. Springer, Cham (2014)

    Google Scholar 

  24. CEPT: CEPT/SE43(11)36 WSD Maximum Power Considerations, 10th SE43 meeting, Bologna, Italy, July 2011

    Google Scholar 

  25. CEPT: CEPT/ECC SE43(11)Info 08 WSD Maximum Power Measurement Report, 10th SE43 meeting, Bologna, Italy, July 2011

    Google Scholar 

  26. CEPT: CEPT/ECC SE43(11)81 Wise-Project Measurement Report: WSD maximum Power Indoor Measurements in Turku Test Network, 12th SE43 meeting, Cambridge, UK, December 2011

    Google Scholar 

  27. CEPT: CEPT/ECC SE43(11)81 WSD maximum power measurements in indoor 2 m reference geometry, 12th SE43 meeting, Cambridge, UK, December 2011

    Google Scholar 

  28. CEPT: CEPT/ECC SE43(11)82 PMSE protection measurements in Helsinki City Theatre, 12th SE43 meeting, Cambridge, UK, December 2011

    Google Scholar 

  29. CEPT: CEPT/ECC SE43(11)82AP1 Wise-Project Measurement Report: PMSE Measurements in Helsinki City Theatre, 12th SE43 meeting, Cambridge, UK, December 2011

    Google Scholar 

  30. Kokkinen, H.: Fairspectrum provides TV white space database for Europe’s first geolocation radio license. Press Release, Helsinki, Finland (2012)

    Google Scholar 

  31. European Commission: Collaborative spectrum sharing. https://ec.europa.eu/research/horizonprize/index.cfm?prize=spectrum-sharing

  32. The Future of UHF Frequency Band project. http://fuhf.turkuamk.fi

  33. Kalliovaara, J., Ekman, R., Jokela, T., Jakobsson, M., Talmola, P., Paavola, J., Huuhka, E., Jokisalo, M., Meriläinen, M.: Suitability of ITU-R P.1546 propagation predictions for allocating LTE SDL with GE06. In: 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), June 2017

    Google Scholar 

  34. Yrjölä, S., Mustonen, M., Matinmikko, M., Talmola, P.: LTE broadcast and supplemental downlink enablers for exploiting novel service and business opportunities in the flexible use of the UHF broadcasting spectrum. IEEE Commun. Mag. 54(7), 76–83 (2016)

    Article  Google Scholar 

  35. Yrjölä, S., Huuhka, E., Talmola, P., Knuutila, T.: Coexistence of digital terrestrial television and 4G LTE mobile network utilizing supplemental downlink concept: a real case study. IEEE Trans. Veh. Technol. PP(99), 1 (2016)

    Google Scholar 

  36. Yrjölä, S., Ahokangas, P., Matinmikko, M., Talmola, P.: Incentives for the key stakeholders in the hybrid use of the UHF broadcasting spectrum utilizing Supplemental Downlink: a dynamic capabilities view. In: 2014 1st International Conference on 5G for Ubiquitous Connectivity (5GU), pp. 215–221, November 2014

    Google Scholar 

  37. Yle: Yle, Qualcomm and Nokia Announce Worlds First Demonstration of LTE Supplemental Downlink in a TV Broadcast Band, September 2016. http://yle.fi/aihe/artikkeli/2016/09/02/yle-qualcomm-and-nokia-announce-worlds-first-demonstration-lte-supplemental

  38. Stare, E., Gimenez, J., Klenner, P.: WIB: a new system concept for digital terrestrial television (DTT). In: IBC 2016 Conference, September 2016

    Google Scholar 

  39. Juretzek, F.: Integration of high tower, high power LTE-advanced broadcast into mobile networks. In: 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–6, June 2016

    Google Scholar 

  40. Ilsen, S., Rother, D., Juretzek, F., Brtillon, P., Seccia, J., Ripamonti, S.: Tower overlay over LTE-Advanced+ (TOoL+) - field trial results. In: 2015 IEEE 5th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), pp. 369–373, September 2015

    Google Scholar 

  41. Ilsen, S., Juretzek, F., Richter, L., Rother, D., Brtillon, P.: Tower overlay over LTE-Advanced+ (TOoL+): results of a field trial in Paris. In: 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–6, June 2016

    Google Scholar 

  42. Cognitive Radio Trial Environment CORE+. http://core.willab.fi/

  43. Palola, M., Rautio, T., Matinmikko, M., Prokkola, J., Mustonen, M., Heikkilä, M., Kippola, T., Yrjölä, S., Hartikainen, V., Tudose, L., Kivinen, A., Paavola, J., Okkonen, J., Mäkeläinen, M., Hänninen, T., Kokkinen, H.: Licensed shared access (LSA) trial demonstration using real LTE network. In: 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 498–502, June 2014

    Google Scholar 

  44. Paavola, J., Kivinen, A.: Device authentication architecture for TV white space systems. In: 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 460–465, June 2014

    Google Scholar 

  45. Palola, M., Matinmikko, M., Prokkola, J., Mustonen, M., Heikkilä, M., Kippola, T., Yrjölä, S., Hartikainen, V., Tudose, L., Kivinen, A., Paavola, J., Heiska, K.: Live field trial of licensed shared access (LSA) concept using LTE network in 2.3 GHz band. In: 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 38–47, April 2014

    Google Scholar 

  46. Mustonen, M., Matinmikko, M., Palola, M., Yrjölä, S., Paavola, J., Kivinen, A., Engelberg, J.: Considerations on the licensed shared access (LSA) architecture from the incumbent perspective. In: 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 150–155, June 2014

    Google Scholar 

  47. Palola, M., Matinmikko, M., Prokkola, J., Mustonen, M., Heikkilä, M., Kippola, T., Yrjölä, S., Hartikainen, V., Tudose, L., Kivinen, A., Paavola, J., Heiska, K., Hänninen, T., Okkonen, J.: Description of finnish licensed shared access (LSA) field trial using TD-LTE in 2.3 GHz band. In: 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 374–375, April 2014

    Google Scholar 

  48. Kalliovaara, J., Jokela, T., Ekman, R., Hallio, J., Jakobsson, M., Kippola, T.: Interference measurements for licensed shared access (LSA) between LTE and wireless cameras in 2.3 GHz band. In: 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 128–134 (2015)

    Google Scholar 

  49. Matinmikko, M., Palola, M., Mustonen, M., Rautio, T., Heikkilä, M., Kippola, T., Yrjölä, S., Hartikainen, V., Tudose, L., Kivinen, A., Kokkinen, H., Mäkeläinen, M.: Field trial of licensed shared access (LSA) with enhanced LTE resource optimization and incumbent protection. In: 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 263–264, September 2015

    Google Scholar 

  50. Yrjölä, S., Hartikainen, V., Tudose, L., Ojaniemi, J., Kivinen, A., Kippola, T.: Field trial of Licensed Shared Access with enhanced spectrum controller power control algorithms and LTE enablers. J. Sig. Process. Syst. 89(1), 119–132 (2017). https://doi.org/10.1007/s11265-016-1170-1

    Article  Google Scholar 

  51. Luttinen, E., Matinmikko, M., Ahokangas, P., Katz, M., Yrjölä, S.: Feasibility assessment of Licensed Shared Access (LSA) concept - case of a finish mobile network operator (MNO). In: 2014 1st International Conference on 5G for Ubiquitous Connectivity (5GU), pp. 252–257, November 2014

    Google Scholar 

  52. Aho, P., Palola, M., Kippola, T., Heikkilä, M., Mäkeläinen, M., Hänninen, T., Tudose, L., Hartikainen, V., Yrjölä, S., Kivinen, A., Paavola, J.: Field trial of Citizens Broadband Radio Service (CBRS)/Spectrum Access System (SAS). In: Wireless Innovation Forum European Conference on Communications Technology and Software Defined Radio (WInnComm-Europe 2016), Paris, France, October 2016

    Google Scholar 

  53. Palola, M., Hartikainen, V., Mäkeläinen, M., Kippola, T., Aho, P., Lähetkangas, K., Tudose, L., Kivinen, A., Joshi, S., Hallio, J.: The first end-to-end live trial of CBRS with carrier aggregation using 3.5 GHz LTE equipment. In: 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1–2, March 2017

    Google Scholar 

  54. Palola, M., Höyhtyä, M., Aho, P., Mustonen, M., Kippola, T., Heikkilä, M., Yrjölä, S., Hartikainen, V., Tudose, L., Kivinen, A., Ekman, R., Hallio, J., Paavola, J., Mäkeläinen, M., Hänninen, T.: Field trial of the 3.5 GHz citizens broadband radio service governed by a spectrum access system (SAS). In: 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1–9, March 2017

    Google Scholar 

  55. ETSI: ETSI TR 103 113 V1.1.1., Mobile Broadband services in the 2300–2400 MHz frequency band under Licensed Shared Access regime, July 2013

    Google Scholar 

  56. ETSI: ETSI TS 103 154 V1.1.1, Reconfigurable Radio Systems (RRS); System requirements for operation of Mobile Broadband Systems in the 2300 MHz–2400 MHz band under Licensed Shared Access (LSA), October 2014

    Google Scholar 

  57. ETSI: ETSI TS 103 235 V1.1.1, Reconfigurable Radio Systems (RRS); System architecture and high level procedures for operation of Licensed Shared Access (LSA) in the 2300 MHz–2400 MHz band, October 2015

    Google Scholar 

  58. ETSI: ETSI TS 103 379 V1.1.1, Reconfigurable Radio Systems (RRS); Information elements and protocols for the interface between LSA Controller (LC) and LSA Repository (LR) for operation of Licensed Shared Access (LSA) in the 2300 MHz–2400 MHz band, January 2017

    Google Scholar 

  59. ETSI releases specifications for Licensed Shared Access, April 2017. http://www.etsi.org/news-events/news/1181-2017-04-news-etsi-releases-specifications-for-licensed-shared-access

  60. Gregora, L., Vojtech, L., Neruda, M.: Indoor signal propagation of LoRa technology. In: 2016 17th International Conference on Mechatronics - Mechatronika (ME), pp. 1–4, December 2016

    Google Scholar 

  61. SATEL: SATEL XPRS radio networking technology. https://xprs.satel.com/

  62. Cisco: White Paper: Cisco Visual Networking Index: Forecast and Methodology, 2016–2021, June 2017

    Google Scholar 

  63. Ericsson: Ericsson Mobility Report 2017, June 2017

    Google Scholar 

  64. ITU-R: Report ITU-R M.2290, Future spectrum requirements estimate for terrestrial IMT, December 2013

    Google Scholar 

  65. Radio Spectrum Policy Group: RSPG16-032 final: Strategic roadmap towards 5G for Europe, Opinion on spectrum related aspects for next generation wireless systems (5G), November 2016

    Google Scholar 

  66. Marcus, M.J.: WRC-19 issues: a survey. IEEE Wirel. Commun. 24(1), 2–3 (2017)

    Article  Google Scholar 

  67. EU project METIS-II: White paper: Preliminary Views and initial considerations on 5G RAN Architecture and Functional Design, March 2016

    Google Scholar 

  68. Badic, B., Drewes, C., Karls, I., Mueck, M.: Rolling Out 5G: Use Cases, Applications, and Technology Solutions. Apress, New York (2016)

    Book  Google Scholar 

  69. European Commission: COM/2012/478 Promoting the Shared Use of Radio Spectrum Resources in the Internal Market, September 2012

    Google Scholar 

  70. Presidents Council of Advisors on Science and Technology: Realizing the full potential of government-held spectrum to spur economic growth, July 2012

    Google Scholar 

  71. Mueck, M., Jiang, W., Sun, G., Cao, H., Dutkiewicz, E., Choi, S.: White Paper: Novel Spectrum Usage Paradigms for 5G, November 2014

    Google Scholar 

  72. Morgado, A., Gomes, A., Frascolla, V., Ntougias, K., Papadias, C., Slock, D., Avdic, E., Marchetti, N., Haziza, N., Anouar, H., Yang, Y., Pesavento, M., Khan, F., Ratnarajah, T.: Dynamic LSA for 5G networks the ADEL perspective. In: 2015 European Conference on Networks and Communications (EuCNC), pp. 190–194, June 2015

    Google Scholar 

  73. Gómez-Barquero, D., Caldwell, M.W.: Broadcast television spectrum incentive auctions in the U.S.: trends, challenges, and opportunities. IEEE Commun. Mag. 53(7), 50–56 (2015)

    Article  Google Scholar 

  74. Federal Communications Commission: Broadcast Incentive Auction. https://www.fcc.gov/about-fcc/fcc-initiatives/incentive-auctions. Accessed 20 June 2017

  75. WIVE project. http://5gtnf.fi/projects/wive/

  76. Critical Operations over Regular Networks (CORNET) project. http://www.oulu.fi/cornet/

  77. Industrial Internet Reference Architecture for Medical Platforms (RAMP) project. http://ramp.turkuamk.fi/

  78. 5G-Xcast project. http://5g-xcast.eu

  79. 5G-PPP: White paper: 5G empowering vertical industries, February 2016

    Google Scholar 

  80. NGMN Alliance: Perspectives on Vertical Industries and Implications for 5G v2.0, September 2016

    Google Scholar 

  81. 5G-PPP: White paper: 5G and Media & Entertainment, January 2016

    Google Scholar 

  82. 5G-PPP: White paper: 5G and the Factories of the Future, October 2015

    Google Scholar 

  83. Nokia: Nokia white paper: 5G - a System of Systems for a programmable multi-service architecture (2016)

    Google Scholar 

  84. 5G Americas: 5G Americas White Paper Network Slicing for 5G and Beyond, November 2016

    Google Scholar 

  85. 3GPP: 3GPP TS 23.501 V1.0.0: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2 (Release 15), June 2017

    Google Scholar 

  86. Taher, T., Attard, R., Riaz, A., Roberson, D., Taylor, J., Zdunek, K., Hallio, J., Ekman, R., Paavola, J., Suutala, J., Roning, J., Matinmikko, M., Höyhtyä, M., MacKenzie, A.: Global spectrum observatory network setup and initial findings. In: 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), June 2014

    Google Scholar 

  87. Attard, R., Kalliovaara, J., Taher, T., Taylor, J., Paavola, J., Ekman, R., Roberson, D.: A high-performance tiered storage system for a global spectrum observatory network. In: Proceedings of the 9th International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM) (2014)

    Google Scholar 

  88. Noorts, G., Engel, J., Taylor, J., Roberson, D., Bacchus, R., Taher, T., Zdunek, K.: An RF spectrum observatory database based on a hybrid storage system. In: 2012 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), October 2012

    Google Scholar 

  89. Abdallah, A., MacKenzie, A.B., Marojevic, V., Kalliovaara, J., Bacchus, R., Riaz, A., Roberson, D., Juhani, H., Ekman, R.: Detecting the impact of human mega-events on spectrum usage. In: 2016 13th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 523–529, January 2016

    Google Scholar 

  90. Höyhtyä, M., Matinmikko, M., Chen, X., Hallio, J., Auranen, J., Ekman, R., Röning, J., Engelberg, J., Kalliovaara, J., Taher, T., Riaz, A., Roberson, D.: Spectrum occupancy measurements in the 2.3-2.4 GHz band: guidelines for licensed shared access in Finland. EAI Endorsed Trans. Cogn. Commun. 1(2), e2, 11 p. (2015). http://eudl.eu/issue/cogcom/1/2

    Article  Google Scholar 

  91. Höyhtyä, M., Matinmikko, M., Chen, X., Hallio, J., Auranen, J., Ekman, R., Roning, J., Engelberg, J., Kalliovaara, J., Taher, T., Riaz, A., Roberson, D.: Measurements and analysis of spectrum occupancy in the 2.3–2.4 GHz band in Finland and Chicago. In: 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 95–101, June 2014

    Google Scholar 

  92. Höyhtyä, M., Mämmelä, A., Eskola, M., Matinmikko, M., Kalliovaara, J., Ojaniemi, J., Suutala, J., Ekman, R., Bacchus, R., Roberson, D.: Spectrum occupancy measurements: a survey and use of interference maps. IEEE Commun. Surv. Tutor. 18(4), 2386–2414 (2016)

    Article  Google Scholar 

  93. Wireless Innovation between Finland and US (WiFiUS). http://209.140.21.224/~jwifiusa/

  94. National Science Foundation. http://www.nsf.gov/

  95. Illinois Institute of Technology. http://web.iit.edu/

  96. CRFS: CRFS RFeye Node 20-6. https://us.crfs.com/en/products/nodes/node-20-6/

  97. ITU: Resolution 232 [COM5/10] (WRC-12) - Use of the frequency band 694–790 MHz by the mobile, except aeronautical mobile, service in Region 1 and related studies (2012)

    Google Scholar 

  98. CEPT: CEPT Report 53: Report A from CEPT to the European Commission in response to the Mandate To develop harmonised technical conditions for the 694–790 MHz (700 MHz) frequency band in the EU for the provision of wireless broadband and other uses in support of EU spectrum policy objectives, November 2014

    Google Scholar 

  99. Finnish Communications Regulatory Authority: 703–733 MHz/758–788 MHz spectrum auction. https://www.viestintavirasto.fi/en/spectrum/radiospectrumuse/spectrumauction.html. Accessed 30 June 2017

  100. Finnish Communications Regulatory Authority: End of 4G spectrum auction. https://www.viestintavirasto.fi/en/ficora/news/2013/endof4gspectrumauction.html. Accessed 30 June 2017

  101. Tektronix: RSA306B USB Spectrum Analyzer. http://www.tek.com/spectrum-analyzer/rsa306. Accessed 20 June 2017

  102. Grönroos, S., Nybom, K., Björkqvist, J., Hallio, J., Auranen, J., Ekman, R.: Distributed spectrum sensing using low cost hardware. J. Sig. Process. Syst. 83(1), 5–17 (2016)

    Article  Google Scholar 

  103. Celtic-Plus: Celtic-Plus web page. https://www.celticplus.eu

  104. Tekes: Trial Environment for Cognitive Radio and Networks 2011–2014. https://www.tekes.fi/en/programmes-and-services/recently-ended-programmes/trial/

  105. Tekes: Team Finland Industrial Internet Program 2014–2019. https://www.tekes.fi/en/programmes-and-services/tekes-programmes/industrial-internet-business-revolution/

Download references

Acknowledgements

Turku University of Applied Sciences is grateful for companies, especially Nokia, Teleste, Digita, Fairspectrum, and Satel, that have supported testbed infrastructure development in EUREKA-Celtic [103], 5thGear [7], Trial [104] and Industrial Internet [105] programs funded in Finland by the Finnish Funding Agency for Innovation (Tekes) [6]. The testbed will be further developed. This work is supported in part by Tekes under the project Wireless for Verticals (WIVE). WIVE is a part of 5G Test Network Finland (5GTNF), and in part by the European Commission under the 5G-PPP project 5G-Xcast (H2020-ICT-2016-2 call, grant number 761498). The views expressed in this contribution are those of the authors and do not necessarily represent the projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Kalliovaara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalliovaara, J. et al. (2018). Designing a Testbed Infrastructure for Experimental Validation and Trialing of 5G Vertical Applications. In: Marques, P., Radwan, A., Mumtaz, S., Noguet, D., Rodriguez, J., Gundlach, M. (eds) Cognitive Radio Oriented Wireless Networks. CrownCom 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-76207-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76207-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76206-7

  • Online ISBN: 978-3-319-76207-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics