Abstract
With the huge amount of daily generated social networks posts, reviews, ratings, recommendations and other forms of online expressions, the web 2.0 has turned into a crucial opinion rich resource. Since others’ opinions seem to be determinant when making a decision both on individual and organizational level, several researches are currently looking to the sentiment analysis.
In this paper, we deal with sentiment analysis in Arabic written Twitter posts. Our proposed approach is leveraging a rich set of multilevel features like syntactic, surface-form, tweet-specific and linguistically motivated features. Sentiment features are also applied, being mainly inferred from both novel general-purpose as well as tweet-specific sentiment lexicons for Arabic words.
Several supervised classification algorithms (Support Vector Machines, Naive Bayes, Decision tree and Random Forest) were applied on our data focusing on modern standard Arabic (MSA) tweets. The experimental results using the proposed resources and methods indicate high performance levels given the challenge imposed by the Arabic language particularities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: ACL 1997, Madrid, Spain, pp. 174–181 (1997)
Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL 2002, Philadelphia (2002)
Bethard, S., Yu, H., Thornton, A., Hatzivassiloglou, V., Jurafsky, D.: Automatic extraction of opinion propositions and their holders. In: Association for the Advancement of Artificial Intelligence (AAAI-2004), San Jose, California (2004)
Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? Finding strong and weak opinion clauses. In: Proceedings of Association for the Advancement of Artificial Intelligence (AAAI-2004), San Jose, California (2004)
Wiebe, J., Riloff, E.: Finding mutual benefit between subjectivity analysis and information extraction. IEEE Trans. Affect. Comput. 2(4), 175–191 (2011)
Ye, Q., Zhang, Z., Law, R.: Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst. Appl. 36(3), 6527–6535 (2009). Part 2
Maurel, S., Dini, L.: Exploration de corpus pour l’analyse de sentiments. In: DEfi Fouille de Textes, Paris, France, pp. 11–23 (2009)
Vernier, M., Monceaux, L., Daille, B.L.: Catégorisation des évaluations dans un corpus de blogs multi-domaine. Revue des nouvelles technologies de l’information 25, 45–70 (2009)
Chardon, B., Muller, S., Laurent, D., Pradel, C., Séguéla, P.: Chaîne de traitement symbolique pour l’analyse d’opinion - l’analyseur d’opinions de Synapse Développement face à Twitter. In: Proceedings of DEfi Fouille de Textes, Caen, France (2015)
Prabowo, R., Thelwall, M.: Sentiment analysis: a combined approach. J. Inf. 3, 143–157 (2009)
Neviarouskaya, A., Prendinger, H., Ishizuka, M.: SentiFul: a lexicon for sentiment analysis. IEEE Trans. Affect. Comput. 2(1), 22–36 (2011)
Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. Arch. 50(1), 723–762 (2014)
Al-Sabbagh, R., Girju, R.: YADAC: yet another dialectal Arabic corpus. In: 8th International Conference on Language Resources and Evaluation, Istanbul (2012)
Abdul-Mageed, M., Diab, M.: AWATIF: a multi-genre corpus for modern standard Arabic subjectivity and sentiment analysis. In: 8th International Conference on Language Resources and Evaluation, Istanbul (2012)
Mourad, A., Darwish, K.: Subjectivity and sentiment analysis of modern standard Arabic and Arabic microblogs. In: 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Atlanta, Georgia, pp. 55–64. Association for Computational Linguistic (2013)
Refaee, E., Rieser, V.: An Arabic Twitter Corpus for subjectivity and sentiment analysis. In: 9th International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland (2014)
Ibrahim, H.S., Abdou, S.M., Gheith, M.: Sentiment analysis for modern standard Arabic colloquial. Int. J. Nat. Lang. Comput. (IJNLC) 4(2), 95–109 (2015)
Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages: feature selection for opinion classification in web forums. ACM Trans. Inf. Syst. 26(3), Article ID: 12 (2008)
Rushdi-Saleh, M., Martin-Valdivia, M., Ureña-López, L., Perea-Ortega, J.: Bilingual experiments with an Arabic-English Corpus for opinion mining. In: Recent Advances in Natural Language, Hissar, Bulgaria, pp. 740–745 (2011)
Soliman, T.H.A., Elmasry, M.A., Hedar, A.R., Doss, M.M.: Mining social networks’ Arabic slang comments. In: IADIS European Conference on Data Mining 2013 (ECDM 2013), Prague, Czech Republic (2013)
Bouchlaghem, R., Elkhelifi, A., Faiz, R.: Opinion mining in microblog texts using machine learning techniques. In: Knowledge Discovery and Data Analysis (KDDA 2015), Alger’s, Algeria (2015)
Green, S., Manning, C.D.: Better Arabic parsing: baselines, evaluations, and analysis. In: COLING (2010)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP (2002)
Heiden, S., Magué, J.-P., Pinceminb, B.: TXM: une plateforme logicielle open-source pour la textométrie conception et développement. In: JADT 2010, pp. 1021–1032 (2010)
Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)
Turney, P., Littman, M.L.: Measuring praise and criticism: inference of semantic orientation from association. ACM Trans. Inf. Syst. 21(4), 315–346 (2003)
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 168–177 (2004)
Fellbaum, C., Grabowski, J., Landes, S.: Performance and confidence in a semantic annotation task. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, Language, Speech and Communication, pp. 216–237. The MIT Press, Cambridge (1998)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
Morlane-Hondère, F., D’hondt, E.: Feature engineering for tweet polarity classification in the 2015 DEFT challenge. In: DEfi Fouille de Textes, Caen, France (2015)
Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: 3rd IEEE International Conference on Data Mining (ICDM), pp. 427–434 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bouchlaghem, R., Elkhelifi, A., Faiz, R. (2018). Sentiment Analysis in Arabic Twitter Posts Using Supervised Methods with Combined Features. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9624. Springer, Cham. https://doi.org/10.1007/978-3-319-75487-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-75487-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75486-4
Online ISBN: 978-3-319-75487-1
eBook Packages: Computer ScienceComputer Science (R0)