Sentiment Analysis in Arabic Twitter Posts Using Supervised Methods with Combined Features | SpringerLink
Skip to main content

Sentiment Analysis in Arabic Twitter Posts Using Supervised Methods with Combined Features

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9624))

Abstract

With the huge amount of daily generated social networks posts, reviews, ratings, recommendations and other forms of online expressions, the web 2.0 has turned into a crucial opinion rich resource. Since others’ opinions seem to be determinant when making a decision both on individual and organizational level, several researches are currently looking to the sentiment analysis.

In this paper, we deal with sentiment analysis in Arabic written Twitter posts. Our proposed approach is leveraging a rich set of multilevel features like syntactic, surface-form, tweet-specific and linguistically motivated features. Sentiment features are also applied, being mainly inferred from both novel general-purpose as well as tweet-specific sentiment lexicons for Arabic words.

Several supervised classification algorithms (Support Vector Machines, Naive Bayes, Decision tree and Random Forest) were applied on our data focusing on modern standard Arabic (MSA) tweets. The experimental results using the proposed resources and methods indicate high performance levels given the challenge imposed by the Arabic language particularities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://semiocast.com/.

  2. 2.

    http://twitter4j.org/en/index.html.

  3. 3.

    http://nlp.stanford.edu/.

  4. 4.

    http://textometrie.ens-lyon.fr/?lang=en.

  5. 5.

    https://wordnet.princeton.edu.

References

  1. Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: ACL 1997, Madrid, Spain, pp. 174–181 (1997)

    Google Scholar 

  2. Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL 2002, Philadelphia (2002)

    Google Scholar 

  3. Bethard, S., Yu, H., Thornton, A., Hatzivassiloglou, V., Jurafsky, D.: Automatic extraction of opinion propositions and their holders. In: Association for the Advancement of Artificial Intelligence (AAAI-2004), San Jose, California (2004)

    Google Scholar 

  4. Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? Finding strong and weak opinion clauses. In: Proceedings of Association for the Advancement of Artificial Intelligence (AAAI-2004), San Jose, California (2004)

    Google Scholar 

  5. Wiebe, J., Riloff, E.: Finding mutual benefit between subjectivity analysis and information extraction. IEEE Trans. Affect. Comput. 2(4), 175–191 (2011)

    Article  Google Scholar 

  6. Ye, Q., Zhang, Z., Law, R.: Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst. Appl. 36(3), 6527–6535 (2009). Part 2

    Article  Google Scholar 

  7. Maurel, S., Dini, L.: Exploration de corpus pour l’analyse de sentiments. In: DEfi Fouille de Textes, Paris, France, pp. 11–23 (2009)

    Google Scholar 

  8. Vernier, M., Monceaux, L., Daille, B.L.: Catégorisation des évaluations dans un corpus de blogs multi-domaine. Revue des nouvelles technologies de l’information 25, 45–70 (2009)

    Google Scholar 

  9. Chardon, B., Muller, S., Laurent, D., Pradel, C., Séguéla, P.: Chaîne de traitement symbolique pour l’analyse d’opinion - l’analyseur d’opinions de Synapse Développement face à Twitter. In: Proceedings of DEfi Fouille de Textes, Caen, France (2015)

    Google Scholar 

  10. Prabowo, R., Thelwall, M.: Sentiment analysis: a combined approach. J. Inf. 3, 143–157 (2009)

    Google Scholar 

  11. Neviarouskaya, A., Prendinger, H., Ishizuka, M.: SentiFul: a lexicon for sentiment analysis. IEEE Trans. Affect. Comput. 2(1), 22–36 (2011)

    Article  Google Scholar 

  12. Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. Arch. 50(1), 723–762 (2014)

    Google Scholar 

  13. Al-Sabbagh, R., Girju, R.: YADAC: yet another dialectal Arabic corpus. In: 8th International Conference on Language Resources and Evaluation, Istanbul (2012)

    Google Scholar 

  14. Abdul-Mageed, M., Diab, M.: AWATIF: a multi-genre corpus for modern standard Arabic subjectivity and sentiment analysis. In: 8th International Conference on Language Resources and Evaluation, Istanbul (2012)

    Google Scholar 

  15. Mourad, A., Darwish, K.: Subjectivity and sentiment analysis of modern standard Arabic and Arabic microblogs. In: 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Atlanta, Georgia, pp. 55–64. Association for Computational Linguistic (2013)

    Google Scholar 

  16. Refaee, E., Rieser, V.: An Arabic Twitter Corpus for subjectivity and sentiment analysis. In: 9th International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland (2014)

    Google Scholar 

  17. Ibrahim, H.S., Abdou, S.M., Gheith, M.: Sentiment analysis for modern standard Arabic colloquial. Int. J. Nat. Lang. Comput. (IJNLC) 4(2), 95–109 (2015)

    Article  Google Scholar 

  18. Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages: feature selection for opinion classification in web forums. ACM Trans. Inf. Syst. 26(3), Article ID: 12 (2008)

    Google Scholar 

  19. Rushdi-Saleh, M., Martin-Valdivia, M., Ureña-López, L., Perea-Ortega, J.: Bilingual experiments with an Arabic-English Corpus for opinion mining. In: Recent Advances in Natural Language, Hissar, Bulgaria, pp. 740–745 (2011)

    Google Scholar 

  20. Soliman, T.H.A., Elmasry, M.A., Hedar, A.R., Doss, M.M.: Mining social networks’ Arabic slang comments. In: IADIS European Conference on Data Mining 2013 (ECDM 2013), Prague, Czech Republic (2013)

    Google Scholar 

  21. Bouchlaghem, R., Elkhelifi, A., Faiz, R.: Opinion mining in microblog texts using machine learning techniques. In: Knowledge Discovery and Data Analysis (KDDA 2015), Alger’s, Algeria (2015)

    Google Scholar 

  22. Green, S., Manning, C.D.: Better Arabic parsing: baselines, evaluations, and analysis. In: COLING (2010)

    Google Scholar 

  23. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP (2002)

    Google Scholar 

  24. Heiden, S., Magué, J.-P., Pinceminb, B.: TXM: une plateforme logicielle open-source pour la textométrie conception et développement. In: JADT 2010, pp. 1021–1032 (2010)

    Google Scholar 

  25. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)

    Google Scholar 

  26. Turney, P., Littman, M.L.: Measuring praise and criticism: inference of semantic orientation from association. ACM Trans. Inf. Syst. 21(4), 315–346 (2003)

    Article  Google Scholar 

  27. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 168–177 (2004)

    Google Scholar 

  28. Fellbaum, C., Grabowski, J., Landes, S.: Performance and confidence in a semantic annotation task. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, Language, Speech and Communication, pp. 216–237. The MIT Press, Cambridge (1998)

    Google Scholar 

  29. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  30. Morlane-Hondère, F., D’hondt, E.: Feature engineering for tweet polarity classification in the 2015 DEFT challenge. In: DEfi Fouille de Textes, Caen, France (2015)

    Google Scholar 

  31. Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: 3rd IEEE International Conference on Data Mining (ICDM), pp. 427–434 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rihab Bouchlaghem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouchlaghem, R., Elkhelifi, A., Faiz, R. (2018). Sentiment Analysis in Arabic Twitter Posts Using Supervised Methods with Combined Features. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9624. Springer, Cham. https://doi.org/10.1007/978-3-319-75487-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75487-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75486-4

  • Online ISBN: 978-3-319-75487-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics