Traumatic Brain Lesion Quantification Based on Mean Diffusivity Changes | SpringerLink
Skip to main content

Traumatic Brain Lesion Quantification Based on Mean Diffusivity Changes

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Abstract

We report the evaluation of an automated method for quantification of brain tissue damage, caused by a severe traumatic brain injury, using mean diffusivity computed from MR diffusion images. Our automatic results obtained on realistic phantoms and real patient images 10 days post-event provided by nine different centers were coherent with four expert manually identified lesions. For realistic phantoms automated method scores were equal to 0.77, 0.77 and 0.83 for Dice, Precision and Sensibility respectively compared to 0.78, 0.72 and 0.86 for the experts. The inter correlation class (ICC) was 0.79. For 7/9 real cases 0.57, 0.50 and 0.70 were respectively obtained for automated method compared to 0.60, 0.52 and 0.78 for experts with ICC = 0.71. Additionally, we detail the quality control module used to pool data from various image provider centers. This study clearly demonstrates the validity of the proposed automated method to eventually compute in a multi-centre project, the lesional load following brain trauma based on MD changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.fmrib.ox.ac.uk/fsl/.

  2. 2.

    https://sites.google.com/site/jeiglesias/ROBEX.

  3. 3.

    http://www.neuromorphometrics.com/.

  4. 4.

    https://surfer.nmr.mgh.harvard.edu/.

  5. 5.

    http://www.itk.org.

  6. 6.

    http://www.isles-challenge.org/ISLES2015/.

References

  1. Cunningham, A.S., Salvador, R., Coles, J.P., et al.: Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128(Pt 8), 1931–1942 (2005)

    Article  Google Scholar 

  2. Davenport, N.D., Lim, K.O., Armstrong, M.T., Sponheim, S.R.: Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 59(3), 2017–2024 (2012)

    Article  Google Scholar 

  3. Doyle, S., Forbes, F., Dojat, M.: P-locus, a complete suite for brain scan segmentation. In: 9h IEEE International Symposium on Biomedical Imaging (ISBI) (2012)

    Google Scholar 

  4. Dubuisson, M., Jain, A.: A modified hausdorff distance for object-matching. In: 12th International Conference on Pattern Recognition (IPAR), pp. 566–568 (1994)

    Google Scholar 

  5. Fiez, J.A., Damasio, H., Grabowski, T.J.: Lesion segmentation and manual warping to a reference brain: intra- and interobserver reliability. Hum. Brain Mapp. 9(4), 192–211 (2000)

    Article  Google Scholar 

  6. Galanaud, D., Perlbarg, V., Gupta, R., et al.: Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology 117(6), 1300–1310 (2012)

    Article  Google Scholar 

  7. Irimia, A., Chambers, M.C., Alger, J.R., et al.: Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes. J. Neurotrauma 28(11), 2287–2306 (2011)

    Article  Google Scholar 

  8. Kim, N., Branch, C.A., Kim, M., Lipton, M.L.: Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PLoS One 8(3), e59382 (2013)

    Article  Google Scholar 

  9. Maggia, C., Doyle, S., Forbes, F., Heck, O., Troprès, I., Berthet, C., Teyssier, Y., Velly, L., Payen, J.-F., Dojat, M.: Assessment of tissue injury in severe brain trauma. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 57–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_6

    Chapter  Google Scholar 

  10. Maier, O., Schroder, C., Forkert, N.D., Martinetz, T., Handels, H.: Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One 10(12), e0145118 (2015)

    Article  Google Scholar 

  11. Manjon, J.V., Coupe, P., Concha, L., Buades, A., Collins, D.L., Robles, M.: Diffusion weighted image denoising using overcomplete local PCA. PLoS One 8(9), e73021 (2013)

    Article  Google Scholar 

  12. Narayana, P.A., Yu, X., Hasan, K.M., et al.: Multi-modal mri of mild traumatic brain injury. Neuroimage Clin. 7, 87–97 (2015)

    Article  Google Scholar 

  13. Pasco, A., Ter Minassian, A., Chapon, C., et al.: Dynamics of cerebral edema and the apparent diffusion coefficient of water changes in patients with severe traumatic brain injury. A prospective MRI study. Eur. Radiol. 16(7), 1501–1508 (2006)

    Article  Google Scholar 

  14. Tagliaferri, F., Compagnone, C., Korsic, M., et al.: A systematic review of brain injury epidemiology in Europe. Acta Neurochir. 148(3), 255–268 (2006). discussion 268

    Article  Google Scholar 

  15. Thornhill, S., Teasdale, G.M., Murray, G.D., et al.: Disability in young people and adults one year after head injury: prospective cohort study. BMJ 320(7250), 1631–1635 (2000)

    Article  Google Scholar 

  16. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  17. Watts, R., Thomas, A., Filippi, C.G., Nickerson, J.P., Freeman, K.: Potholes and molehills: bias in the diagnostic performance of diffusion-tensor imaging in concussion. Radiology 272(1), 217–223 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Grenoble MRI facility IRMaGe was partly funded by the French program Investissement d’avenir run by the Agence Nationale pour la Recherche; grant Infrastructure d’avenir en Biologie Santé - ANR-11-INBS-0006. Research funded by French ministry of research and education under the Projet Hospitalier de Recherche Clinique grant OXY-TC to JFP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Dojat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maggia, C. et al. (2018). Traumatic Brain Lesion Quantification Based on Mean Diffusivity Changes. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics