Abstract
In the context of performance models, service demands are key model parameters capturing the average time individual requests of different workload classes are actively processed. In a system under load, due to measurement interference, service demands normally cannot be measured directly, however, a number of estimation approaches exist based on high-level performance metrics. In this paper, we show that service demands provide significant benefits for implementing modern auto-scalers. Auto-scaling describes the process of dynamically adjusting the number of allocated virtual resources (e.g., virtual machines) in a data center according to the incoming workload. We demonstrate that even a simple auto-scaler that leverages information about service demands significantly outperforms auto-scalers solely based on CPU utilization measurements. This is shown by testing two approaches in three different scenarios. Our results show that the service demand-based auto-scaler outperforms the CPU utilization-based one in all scenarios. Our results encourage further research on the application of service demand estimates for resource management in data centers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
LibReDE: https://descartes.tools/librede/.
- 2.
Retailrocket Source: https://www.kaggle.com/retailrocket/ecommerce-dataset.
- 3.
Apache CloudStack: https://cloudstack.apache.org/.
- 4.
Citrix Netscaler: https://www.citrix.de/products/netscaler-adc/.
References
Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Upper Saddle River (1984)
Menascé, D.A., Dowdy, L.W., Almeida, V.A.F.: Performance by Design: Computer Capacity Planning by Example. Prentice Hall PTR, Upper Saddle River (2004)
Spinner, S., Casale, G., Brosig, F., Kounev, S.: Evaluating approaches to resource demand estimation. Perform. Eval. 92, 51–71 (2015)
Willnecker, F., Dlugi, M., Brunnert, A., Spinner, S., Kounev, S., Gottesheim, W., Krcmar, H.: Comparing the accuracy of resource demand measurement and estimation techniques. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 115–129. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23267-6_8
Rolia, J., Vetland, V.: Parameter estimation for performance models of distributed application systems. In: CASCON 1995, p. 54. IBM Press (1995)
Brosig, F., Kounev, S., Krogmann, K.: Automated extraction of palladio component models from running enterprise java applications. In: VALUETOOLS 2009, pp. 1–10 (2009)
Wang, W., et al.: Application-level CPU consumption estimation: towards performance isolation of multi-tenancy web applications. In: IEEE CLOUD 2012, pp. 439–446, June 2012
Zheng, T., Woodside, C., Litoiu, M.: Performance model estimation and tracking using optimal filters. IEEE TSE 34(3), 391–406 (2008)
Spinner, S., Casale, G., Zhu, X., Kounev, S.: Librede: a library for resource demand estimation. In: ACM/SPEC ICPE 2014, pp. 227–228. ACM, New York (2014)
Grohmann, J., Herbst, N., Spinner, S., Kounev, S.: Self-tuning resource demand estimation. In: Proceedings of the 14th IEEE International Conference on Autonomic Computing (ICAC 2017), July 2017
Bolch, G., et al.: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. John Wiley & Sons, New York (2006)
Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Math. Comput. 28(125), 231–236 (1974)
Herbst, N., Kounev, S., Weber, A., Groenda, H.: BUNGEE: an elasticity benchmark for self-adaptive IaaS cloud environments. In: SEAMS 2015, pp. 46–56. IEEE Press (2015)
Herbst, N., et al.: Ready for Rain? A View from SPEC Research on the Future of Cloud Metrics. CoRR abs/1604.03470 (2016)
Iosup, A., Yigitbasi, N., Epema, D.: On the performance variability of production cloud services. In: CCGrid 2011, pp. 104–113 (2011)
Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag. 23(3), 567–619 (2015)
Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–592 (2014)
Han, R., Guo, L., et al.: Lightweight resource scaling for cloud applications. In: IEEE/ACM CCGrid 2012, pp. 644–651. IEEE (2012)
Maurer, M., Brandic, I., Sakellariou, R.: Enacting SLAs in clouds using rules. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 455–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23400-2_42
Urgaonkar, B., et al.: Agile dynamic provisioning of multi-tier internet applications. ACM TAAS 3(1), 1 (2008)
Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for dynamic resource provisioning of multi-tier applications. In: IEEE ICAC 2007, p. 27. IEEE (2007)
Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured CPU resource provisioning for virtualized servers using Kalman filters. In: ACM ICAC 2009, pp. 117–126. ACM (2009)
Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for cloud infrastructures. In: IEEE NOMS 2012, pp. 204–212. IEEE (2012)
Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: A hybrid reinforcement learning approach to autonomic resource allocation. In: IEEE ICAC 2006, pp. 65–73. IEEE (2006)
Rao, J., et al.: VCONF: a reinforcement learning approach to virtual machines auto-configuration. In: ACM ICAC 2009, pp. 137–146. ACM (2009)
Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Futur. Gener. Comput. Syst. 27(6), 871–879 (2011)
Chen, G., et al.: Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: NSDI, vol. 8, pp. 337–350 (2008)
Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for multi-tenant cloud systems. In: ACM Symposium on Cloud Computing. ACM (2011)
Nguyen, H., et al.: Agile: elastic distributed resource scaling for infrastructure-as-a-service. In: ICAC, vol. 13, pp. 69–82 (2013)
Spinner, S., et al.: Runtime vertical scaling of virtualized applications via online model estimation. In: IEEE SASO 2014, pp. 157–166. IEEE (2014)
Acknowledgements
This work was co-funded by the German Research Foundation (DFG) under grant No. (KO 3445/11-1) and by Google Inc. (Faculty Research Award).
Arif Merchant, Google Inc., contributed with helpful ideas and feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Bauer, A., Grohmann, J., Herbst, N., Kounev, S. (2018). On the Value of Service Demand Estimation for Auto-scaling. In: German, R., Hielscher, KS., Krieger, U. (eds) Measurement, Modelling and Evaluation of Computing Systems. MMB 2018. Lecture Notes in Computer Science(), vol 10740. Springer, Cham. https://doi.org/10.1007/978-3-319-74947-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-74947-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74946-4
Online ISBN: 978-3-319-74947-1
eBook Packages: Computer ScienceComputer Science (R0)