Enhancement for Secure Multiple Matrix Multiplications over Ring-LWE Homomorphic Encryption | SpringerLink
Skip to main content

Enhancement for Secure Multiple Matrix Multiplications over Ring-LWE Homomorphic Encryption

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10701))

Abstract

Homomorphic encryption allows to perform various calculations on encrypted data without decryption. In this paper, we propose an efficient method for secure multiple matrix multiplications over the somewhat homomorphic encryption scheme proposed by Brakerski and Vaikuntanathan. Our method is a generalization of Duong et al.’s method, which computes only one multiplication between two matrices. In order to minimize both the ciphertext size and the computation cost, our method packs every matrix into a single ciphertext so that it enables efficient matrix multiplications over the packed ciphertexts. We also propose several modifications to obtain practical performance of secure multiplications among matrices with larger size and entries. We show implementation results of our packing method with modifications for secure multiplications among two and three matrices with \(32 \times 32\) and \(64 \times 64\) sizes and entries from 16-bit to 64-bit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_18

    Chapter  Google Scholar 

  2. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_4

    Chapter  Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3) (2014). Article No. 13, Special issue on innovations in theoretical computer science 2012-Part II

    Google Scholar 

  4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  Google Scholar 

  6. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_19

    Chapter  Google Scholar 

  7. Duong, D.H., Mishra, P.K., Yasuda, M.: Efficient secure matrix multiplication over LWE-based homomorphic encryption. Tatra Mountains Math. Publ. 67(1), 69–83 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing-STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  9. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  10. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint 2012/144 (2014). https://eprint.iacr.org/2012/144

  11. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: ACM Workshop on Cloud Computing Security Workshop-CCSW 2011, pp. 113–124. ACM (2011)

    Google Scholar 

  12. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20

    Chapter  Google Scholar 

  13. Lòpez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Symposium on Theory of Computing-STOC 2012, pp. 1219–1234. ACM (2012)

    Google Scholar 

  14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Google Scholar 

  15. Pedrouzo-Ulloa, A., Troncoso-Pastoriza, J.R., Pérez-González, F.: Number theoretic transforms for secure signal processing. IEEE Trans. Inf. Forensics Secur. 12(5), 1125–1140 (2017)

    Article  Google Scholar 

  16. The PARI Group, Bordeaux, PARI/GP. http://pari.math.u-bordeaux.fr/doc.html

  17. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: New packing method in somewhat homomorphic encryption and its applications. Secur. Commun. Netw. (SCN) 8(13), 2194–2213 (2015)

    Article  MATH  Google Scholar 

  19. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure statistical analysis using RLWE-based homomorphic encryption. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 471–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_27

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by JST CREST Grant Number JPMJCR14D6, Japan. This work was also supported by JSPS KAKENHI Grant Numbers 16K17644 and 16H02830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Yasuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, P.K., Duong, D.H., Yasuda, M. (2017). Enhancement for Secure Multiple Matrix Multiplications over Ring-LWE Homomorphic Encryption. In: Liu, J., Samarati, P. (eds) Information Security Practice and Experience. ISPEC 2017. Lecture Notes in Computer Science(), vol 10701. Springer, Cham. https://doi.org/10.1007/978-3-319-72359-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72359-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72358-7

  • Online ISBN: 978-3-319-72359-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics