Abstract
Some industries have critical areas (dangerous or hazardous) where the presence of a human must be reduced or avoided. In some cases, there are areas where humans should be replaced by robots. The present work uses a robot with differential drive to scan an environment with known and unknown obstacles, defined in 3D simulation. It is important that the robot be able to make the right decisions about its way without the need of an operator. A solution to this challenge will be presented in this paper. The control application and its communication module with a simulator or a real robot are proposed. The robot can perform the scan, passing through all the waypoints arranged in a grid. The results are presented, showcasing the robot’s capacity to perform a viable trajectory without human intervention.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mosterman, P.J., Zander, J.: Industry 4.0 as a cyber-physical system study. Softw. Syst. Model. 15(1), 17–29 (2016)
Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM 7(4), 326–329 (1960). New York
Pereira, N., Ribeiro, F., Lopes, G., Whitney, D., Lino, J.: Autonomous golf ball picking robot design and development. Ind. Robot Int. J. 39(6), 541–550 (2012)
Hirakawa, A. R., Saraiva, A. M., Cugnasca, C. E.: Autômatos Adaptativos Aplicados em Automaçao e Robtica(A4R). IEEE Lat. Am. Trans. 5(7), 539–543 (2007). São Paulo
Vaz, D.A.B.O.: Planejamento de movimento cinemático-dinâmico para robôs mveis com rodas deslizantes. Universidade de São Paulo (2011)
Yang, X., Zeng, Z., Xiao, J., Zheng, Z.: Trajectory planning for RoboCup MSL mobile robots based on Bézier curve and Voronoi diagram. In: IEEE International Conference on Information and Automation, pp. 2552–2557 (2015)
Kloetzer, M., Mahuela, C., Gonzalez, R.: Optimizing cell decomposition path planning for mobile robots using different metrics. In: 19th International Conference on System Theory, Control and Computing (ICSTCC), pp. 565–570 (2015)
Magid, E., Karen, D.,Rivlin, E., Yavneh,I.: Spline-based robot navigation. In: IEEE/RSJ International Conference on Intelligent Robots and System, pp. 2296–2301 (2006)
Hwang, J.H., Arkin, R.C., Kwon, D.S.: Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1444–1449 (2003)
Simba, K.R., Uchiyama, N., Sano, S.: Real-time trajectory generation for movile robots in a corridor-like space using Bezier curves. In: IEEE/SICE International Symposium Systrem Integration, pp. 37–41 (2013)
Costa, P., Gonçalvez, J., Lima, J.: SimTwo realistic simulator: a tool for the development and validation of robot software. Int. J. Theor. Appl. Math. Comput. Sci. 17–33 (2011)
Nascimento, T.P., Moreira, A.P., Costa, P., Costa, P, Conceição, A.G.S.: Modeling omnidirectiona mobile robots: an approach using SimTwo. In: 10th Portuguese Conference on Automatic Control, Funchal, pp. 117–223 (2012)
Lima, J., Gonçalves, J., Costa, P., Moreira, A.: Modeling and simulation of a laser scanner sensor: an industrial application case study. In: Azevedo, A. (ed.) Advances in Sustainable and Competitive Manufacturing Systems. Lecture Notes in Mechanical Engineering, pp. 697–705. Springer, Heidelberg (2013)
Lima, J., Gonçalves, J., Costa, P.: Modeling of a low cost laser scanner sensor. In: Moreira, A., Matos, A., Veiga, G. (eds.) CONTROLO2014 Proceedings of the 11th Portuguese Conference on Automatic Control, vol. 321, pp. 697–705. Springer, Cham (2015)
Gonçalves, J., Lima, J., Costa, P., Moreira, A.: Modeling and simulation of the EMG30 geared motor with encoder resorting to SimTwo: the official Robot@Factory simulator. In: Azevedo, A. (ed.) Advances in Sustainable and Competitive Manufacturing Systems, pp. 307–314. Springer, Heidelberg (2013)
Chapra, C.S., Canale, R.P.: Numerical Methods for Engineers, 6th edn. The McGraw-Hill Companies, New York (2010)
Acknowledgment
Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” is financed by the North Portugal Regional Operational. Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).
This work is also financed by the ERDF European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT Fundaçao para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Piardi, L., Lima, J., Costa, P., Brito, T. (2018). Development of a Dynamic Path for a Toxic Substances Mapping Mobile Robot in Industry Environment. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-70836-2_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70835-5
Online ISBN: 978-3-319-70836-2
eBook Packages: EngineeringEngineering (R0)