Bimodal Person Re-identification in Multi-camera System | SpringerLink
Skip to main content

Bimodal Person Re-identification in Multi-camera System

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

  • 2849 Accesses

Abstract

This paper introduces a new method to enhance person re-identification by combining person appearance and face modalities in a multi-camera system. The use of face modality requires a preprocessing step of face pose estimation. Therefore, we proposed a new method for face pose estimation in low-resolution context. As for the extraction of person appearance signature, it was performed on discriminant stripes selected automatically. We evaluated the proposed pose estimation method as well as the process of re-identification based on appearance and face modalities on the challenging VIPeR database. The experimental results show that the combination of person appearance and face modalities leads to promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: BMVC, vol. 2, no. 5, p. 6 (2011)

    Google Scholar 

  2. Derbel, A., Jemaa, Y.B., Canals, R., Emile, B., Treuillet, S., Hamadou, A.B.: Comparative study between color texture and shape descriptors for multi-camera pedestrians identification. In: International Conference on Image Processing Theory, Tools and Applications, pp. 313–318 (2012)

    Google Scholar 

  3. Bialkowski, A., Denman, S., Sridharan, S., Fookes, C., Lucey, P.: A database for person re-identification in multi camera surveillance networks. In: International Conference on Digital Image Computing Techniques and Applications (2012)

    Google Scholar 

  4. Yang, Z., Jin, L., Tao, D.: A comparative study of several feature extraction methods for person re-identification. In: Zheng, W.-S., Sun, Z., Wang, Y., Chen, X., Yuen, P.C., Lai, J. (eds.) CCBR 2012. LNCS, vol. 7701, pp. 268–277. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35136-5_33

    Chapter  Google Scholar 

  5. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2360–2367 (2010)

    Google Scholar 

  6. Yuan, L., Tian, Z.: Person re-identification based on color and texture feature fusion. In: Huang, D.-S., Jo, K.-H. (eds.) ICIC 2016. LNCS, vol. 9772, pp. 341–352. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42294-7_30

    Chapter  Google Scholar 

  7. Nambiar, A., Nascimento, J.C., Bernardino, A., Santos-Victor, J.: Person re-identification in frontal gait sequences via histogram of optic flow energy image. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 250–262. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_23

    Chapter  Google Scholar 

  8. Bedagkar-Gala, A., Shah, S.K.: Part-based spatio-temporal model for multi-person re-identification. Pattern Recogn. Lett. 33, 1908–1915 (2012)

    Article  Google Scholar 

  9. Liu, Z., Zhang, Z., Wu, Q., Wang, Y.: Enhancing person re-identification by integrating gait biometric. Neurocomputing 168, 1144–1156 (2015)

    Article  Google Scholar 

  10. Zell, A.: Real time face tracking and pose estimation using an adaptive correlation filter for human-robot interaction. In: Mobile Robots (ECMR), pp. 119–124 (2013)

    Google Scholar 

  11. Chen, J., Wu, J., Richter, K., Konrad, J., Ishwar, P.: Estimating head pose orientation using extremely low resolution images. In: IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 65–68 (2016)

    Google Scholar 

  12. Grimson, Y., Stauffer, C., Romano, R., Lee, L.: Using adaptive tracking to classify and monitor activities in a site. In: The Computer Vision Pattern Recognition, pp. 22–29 (1998)

    Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2005)

    Google Scholar 

  14. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. In: 12th International Conference on Pattern Recognition (1994)

    Google Scholar 

  15. Frikha, M., Fendri, E., Hammami, M.: A new appearance signature for real time person re-identification. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 175–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10840-7_22

    Google Scholar 

  16. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  17. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Article  Google Scholar 

  18. Minut, S., Mahadevan, S., Henderson, J.M., Dyer, F.C.: Face recognition using foveal vision. In: IEEE International Workshop on Biologically Motivated Computer Vision, pp. 424–433 (2000)

    Google Scholar 

  19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  20. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_21

    Chapter  Google Scholar 

  21. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)

    Article  Google Scholar 

  22. Pietikäinen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classification using feature distributions. Pattern Recogn. 33, 43–52 (2000)

    Article  Google Scholar 

  23. Rahim, M.A., Azam, M.S., Hossain, N., Islam, M.R.: Face recognition using local binary patterns (LBP). Glob. J. Comput. Sci. Technol. 13 (2013)

    Google Scholar 

  24. Kwong, J.N.S., Gong, S.: Learning support vector machines for a multi-view face model. In: Proceedings of the British Machine Vision Conference (1999)

    Google Scholar 

  25. Li, Y., Gong, S., Sherrah, S., Liddell, H.: Support vector machine based multiview face detection and recognition. J. Image Vis. Comput. 22, 413–427 (2014)

    Article  Google Scholar 

  26. Patacchiola, M., Cangelosi, A.: Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods. J. Pattern Recogn. 71, 132–143 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazar Mliki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mliki, H., Naffeti, M., Fendri, E. (2017). Bimodal Person Re-identification in Multi-camera System. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics