A New Bayesian Method for Jointly Sparse Signal Recovery | SpringerLink
Skip to main content

A New Bayesian Method for Jointly Sparse Signal Recovery

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

In this paper, we address the recovery of a set of jointly sparse vectors from incomplete measurements. We provide a Bayesian inference scheme for the multiple measurement vector model and develop a novel method to carry out maximum a posteriori estimation for the Bayesian inference based on the prior information on the sparsity structure. Instead of implementing Bayesian variables estimation, we establish the corresponding minimization algorithms for all of the sparse vectors by applying block coordinate descent techniques, and then solve them iteratively and sequently through a re-weighted method. Numerical experiments demonstrate the enhancement of joint sparsity via the new method and its robust recovery performance in the case of a low sampling ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  3. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bajwa, W., Haupt, J., Sayeed, A., Nowak, R.: Compressive wireless sensing. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, pp. 134–142. ACM (2006)

    Google Scholar 

  5. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (2002)

    Article  Google Scholar 

  6. Petre, S., Randolph, M.: Spectral analysis of signals (POD). Leber Magen Darm 13(2), 57–63 (2005)

    Google Scholar 

  7. Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eldar, Y.C., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55(11), 5302–5316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eldar, Y.C., Rauhut, H.: Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inf. Theory 56(1), 505–519 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davies, M.E., Eldar, Y.C.: Rank awareness in joint sparse recovery. IEEE Trans. Inf. Theory 58(2), 1135–1146 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, K., Bresler, Y., Junge, M.: Subspace methods for joint sparse recovery. IEEE Trans. Inf. Theory 58(6), 3613–3641 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blanchard, J.D., Davies, M.E.: Recovery guarantees for rank aware pursuits. IEEE Signal Process. Lett. 19(7), 427–430 (2012)

    Article  Google Scholar 

  13. Gogna, A., Shukla, A., Agarwal, H.K., Majumdar, A.: Split Bregman algorithms for sparse/joint-sparse and low-rank signal recovery: application in compressive hyperspectral imaging. In: IEEE International Conference on Image Processing, pp. 1302–1306 (2015)

    Google Scholar 

  14. Kim, J.M., Lee, O.K., Ye, J.C.: Compressive MUSIC: revisiting the link between compressive sensing and array signal processing. IEEE Trans. Inf. Theory 58(1), 278–301 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Vila, J.P., Schniter, P.: Expectation-maximization Gaussian-mixture approximate message passing. IEEE Trans. Signal Process. 61(19), 4658–4672 (2013)

    Article  MathSciNet  Google Scholar 

  16. Li, L., Huang, X., Suykens, J.A.K.: Signal recovery for jointly sparse vectors with different sensing matrices. Signal Process. 108(C), 451–458 (2015)

    Article  Google Scholar 

  17. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ji, S., Dunson, D., Carin, L.: Multitask compressive sensing. IEEE Trans. Signal Process. 57(1), 92–106 (2009)

    Article  MathSciNet  Google Scholar 

  19. George, E.I., Mcculloch, R.E.: Approaches for Bayesian variable selection. Stat. Sin. 7(2), 339–373 (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, H., Huang, X., Peng, C., Yang, J., Li, L. (2017). A New Bayesian Method for Jointly Sparse Signal Recovery. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_94

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics