A Hierarchical Mixture Density Network | SpringerLink
Skip to main content

A Hierarchical Mixture Density Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4477 Accesses

Abstract

The relationship among three correlated variables could be very sophisticated, as a result, we may not be able to find their hidden causality and model their relationship explicitly. However, we still can make our best guess for possible mappings among these variables, based on the observed relationship. One of the complicated relationships among three correlated variables could be a two-layer hierarchical many-to-many mapping. In this paper, we proposed a Hierarchical Mixture Density Network (HMDN) to model the two-layer hierarchical many-to-many mapping. We apply HMDN on an indoor positioning problem and show its benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazzani, L., Larochelle, H., Torresani, L.: Recurrent mixture density network for spatiotemporal visual attention. arXiv preprint (2016). arXiv:1603.08199

  2. Berio, D., Akten, M., Leymarie, F.F., Grierson, M., Plamondon, R.: Sequence generation with a physiologically plausible model of handwriting and recurrent mixture density networks (2016)

    Google Scholar 

  3. Bishop, C.M.: Mixture density networks (1994)

    Google Scholar 

  4. Herzallah, R., Lowe, D.: A mixture density network approach to modelling and exploiting uncertainty in nonlinear control problems. Eng. Appl. Artif. Intell. 17(2), 145–158 (2004)

    Article  Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Iso, H., Wakamiya, S., Aramaki, E.: Density estimation for geolocation via convolutional mixture density network. arXiv preprint (2017). arXiv:1705.02750

  7. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint (2013). arXiv:1312.6114

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. Moon, S., Park, Y., Suh, I.H.: Predicting multiple pregrasping poses by combining deep convolutional neural networks with mixture density networks. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 581–590. Springer, Cham (2016). doi:10.1007/978-3-319-46675-0_64

    Chapter  Google Scholar 

  10. Randall, J., Amft, O., Bohn, J., Burri, M.: LuxTrace: indoor positioning using building illumination. Pers. Ubiquit. Comput. 11(6), 417–428 (2007)

    Article  Google Scholar 

  11. Rehder, E., Wirth, F., Lauer, M., Stiller, C.: Pedestrian prediction by planning using deep neural networks. arXiv preprint (2017). arXiv:1706.05904

  12. Richmond, K.: A trajectory mixture density network for the acoustic-articulatory inversion mapping. In: Ninth International Conference on Spoken Language Processing (2006)

    Google Scholar 

  13. Torres-Sospedra, J., Montoliu, R., Martínez-Usó, A., Avariento, J.P., Arnau, T.J., Benedito-Bordonau, M., Huerta, J.: UJIIndoorLoc: a new multi-building and multi-floor database for wlan fingerprint-based indoor localization problems. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 261–270. IEEE (2014)

    Google Scholar 

  14. Wang, W., Xu, S., Xu, B.: Gating recurrent mixture density networks for acoustic modeling in statistical parametric speech synthesis. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5520–5524. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, F., Soriano, J., Kubo, T., Ikeda, K. (2017). A Hierarchical Mixture Density Network. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_93

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics