The Analysis and Classify of Sleep Stage Using Deep Learning Network from Single-Channel EEG Signal | SpringerLink
Skip to main content

The Analysis and Classify of Sleep Stage Using Deep Learning Network from Single-Channel EEG Signal

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

Electroencephalogram (EEG)-based sleep stage analysis is helpful for diagnosis of sleep disorder. However, the accuracy of previous EEG-based method is still unsatisfactory. In order to improve the classification performance, we proposed an EEG-based automatic sleep stage classification method, which combined convolutional neural network (CNN) and time-frequency decomposition. The time-frequency image (TFI) of EEG signals is obtained by using the smoothed short-time Fourier transform. The features derived from the TFI have been used as an input feature of a CNN for sleep stage classification. The proposed method achieves the best accuracy of 88.83%. The experimental results demonstrate that deep learning method provides better classification performance compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pan, S.T., Kuo, C.E., Zeng, J.H., Liang, S.F.: A transition-constrained discrete hidden markov model for automatic sleep staging. BioMed. Eng. Online 11(1), 1–19 (2012)

    Article  Google Scholar 

  2. Rechtschaffen, A.Q., Kales, A.A.: A manual of standardized terminology techniques and scoring system for sleep stages in human subjects. Psychiatry Clin. Neurosci. 26(6), 644 (1968)

    Google Scholar 

  3. Schulz, H.: Phasic or transient? Comment on the terminology of the AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. JCSM Official Publ. Am. Acad. Sleep Med. 3(7), 752 (2007)

    Google Scholar 

  4. Aboalayon, K.A.I., Faezipour, M., Almuhammadi, W.S., Moslehpour, S.: Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation. Entropy 18(9), 272–303 (2016)

    Article  Google Scholar 

  5. Herrera, L.J., Mora, A.M., Fernandes, C., Migotina, D., Guillen, A., Rosa, A.C.: Symbolic representation of the EEG for sleep stage classification. In: International Conference on Intelligent Systems Design and Applications 2011, vol. 60, pp. 253–258. IEEE, Cordoba, Spain (2011)

    Google Scholar 

  6. Ronzhina, M., Janoušek, O., Kolářová, J., Nováková, M., Honzík, P., Provazník, I.: Sleep scoring using artificial neural networks. Sleep Med. Rev. 16(3), 251–263 (2012)

    Article  Google Scholar 

  7. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 108(1), 10–19 (2012)

    Article  Google Scholar 

  8. Hassan, A.R., Bashar, S.K., Bhuiyan, M.I.H.: Automatic classification of sleep stages from single-channel electroencephalogram. In: India Conference 2015, pp. 1–6. IEEE, New Delhi, India (2015)

    Google Scholar 

  9. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2014)

    Article  Google Scholar 

  10. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  11. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Kemp, B., Zwinderman, A.H., Tuk, B., Kamphuisen, H.A.C., Oberye, J.J.L.: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 47(9), 1185–1194 (2000)

    Article  Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: Conference on Computer Vision and Pattern Recognition 2014, pp. 1733–1740. IEEE, Columbus, OH, USA (2014)

    Google Scholar 

  16. Lajnef, T., Chaibi, S., Ruby, P., Aguera, P.E., Eichenlaub, J.B., Samet, M., Kachouri, A., Jerbi, K.: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods 250(30), 94–105 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (61273250), the Fundamental Research Funds for the Central Universities (No. 3102017jc11002) and the graduate starting seed fund of Northwestern Polytechnical University (Z2017141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyun Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xie, S., Li, Y., Xie, X., Wang, W., Duan, X. (2017). The Analysis and Classify of Sleep Stage Using Deep Learning Network from Single-Channel EEG Signal. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics