Encoding Multisensory Information in Modular Neural Networks | SpringerLink
Skip to main content

Encoding Multisensory Information in Modular Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4362 Accesses

Abstract

The brain is capable of integrating information in multiple sensory channels in a Bayesian optimal way. Based on a decentralized network model inspired by electrophysiological recordings, we consider the structural pre-requisites for optimal multisensory integration. In this architecture, same-channel feedforward and recurrent links encode the unisensory likelihoods, whereas reciprocal couplings connecting the different modules are shaped by the correlation in the joint prior probabilities. Moreover, the statistical relationship between the difference in the optimal network structures and the difference in the priors and the likelihoods clearly shows that the network can encode multisensory information in a distributed manner. Our results generate testable predictions for future experiments and are likely to be applicable to other artificial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alais, D., Burr, D.: No direction-specific bimodal facilitation for audiovisual motion detection. Cogn. Brain Res. 19(2), 185–194 (2004)

    Article  Google Scholar 

  2. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)

    Article  Google Scholar 

  3. Gu, Y., Angelaki, D.E., DeAngelis, G.C.: Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 11(10), 1201–1210 (2008)

    Article  Google Scholar 

  4. Chen, A., DeAngelis, G.C., Angelaki, D.E.: Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow. J. Neurosci. 30(8), 3022–3042 (2010)

    Article  Google Scholar 

  5. Chen, A., DeAngelis, G.C., Angelaki, D.E.: Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J. Neurosci. 33(8), 3567–3581 (2013)

    Article  Google Scholar 

  6. Chen, A., Gu, Y., Liu, S., DeAngelis, G.C., Angelaki, D.E.: Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. J. Neurosci. 36(13), 3789–3798 (2016)

    Article  Google Scholar 

  7. Zhang, W.H., Chen, A., Rasch, M.J., Wu, S.: Decentralized multisensory information integration in neural systems. J. Neurosci. 36(2), 532–547 (2016)

    Article  Google Scholar 

  8. Zhang, W.H., Wang, H., Wong, K.Y.M., Wu, S.: “Congruent” and “opposite” neurons: sisters for multisensory integration and segregation. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 3180–3188. Curran Associates, Inc. (2016)

    Google Scholar 

  9. Wang, H., Zhang, W.-H., Wong, K.Y.M., Wu, S.: How the prior information shapes neural networks for optimal multisensory integration. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS, vol. 10262, pp. 128–136. Springer, Cham (2017). doi:10.1007/978-3-319-59081-3_16

    Chapter  Google Scholar 

  10. Chen, A., Gu, Y., Liu, S., DeAngelis, G.C., Angelaki, D.E.: Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. In: The 16th Japan-China-Korea Joint Workshop on Neurobiology and Neuroinformatics (NBNI 2016), Hong Kong (2016)

    Google Scholar 

  11. Murray, R.F., Morgenstern, Y.: Cue combination on the circle and the sphere. J. Vis. 10(11), 15 (2010)

    Article  Google Scholar 

  12. Girshick, A.R., Landy, M.S., Simoncelli, E.P.: Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14(7), 926–932 (2011)

    Article  Google Scholar 

  13. Ghazanfar, A.A., Schroeder, C.E.: Is neocortex essentially multisensory? Trends Cogn. Sci. 10(6), 278–285 (2006)

    Article  Google Scholar 

  14. Sato, Y., Toyoizumi, T., Aihara, K.: Bayesian inference explains perception of unity and ventriloquism aftereffect: identification of common sources of audiovisual stimuli. Neural Comput. 19(12), 3335–3355 (2007)

    Article  MATH  Google Scholar 

  15. Shams, L., Ma, W.J., Beierholm, U.: Sound-induced flash illusion as an optimal percept. NeuroReport 16(17), 1923–1927 (2005)

    Article  Google Scholar 

  16. Shams, L., Beierholm, U.R.: Causal inference in perception. Trends Cogn. Sci. 14(9), 425–432 (2010)

    Article  Google Scholar 

  17. Ma, W.J., Beck, J.M., Latham, P.E., Pouget, A.: Bayesian inference with probabilistic population codes. Nat. Neurosci. 9(11), 1432–1438 (2006)

    Article  Google Scholar 

  18. Fung, C.C.A., Wong, K.Y.M., Wu, S.: A moving bump in a continuous manifold: a comprehensive study of the tracking dynamics of continuous attractor neural networks. Neural Comput. 22(3), 752–792 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28 (2013)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Research Grants Council of Hong Kong (N\(\_\)HKUST606/12, 605813 and 16322616) and National Basic Research Program of China (2014CB846101) and the Natural Science Foundation of China (31261160495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, H., Zhang, WH., Wong, K.Y.M., Wu, S. (2017). Encoding Multisensory Information in Modular Neural Networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics