Abstract
This paper proposes a novel approach to automating origami or paper folding. The folding problem is formulated as a combinatorial optimization problem to automatically find feasible folding sequences toward the desired shape from a generic crease pattern, minimizing the dissimilarity between the current and desired origami shapes. Specifically, we present a discrete particle swarm optimization algorithm, which can take advantage of the classical particle swarm optimization algorithm in a discrete folding action space. Through extensive numerical experiments, we have shown that the proposed approach can generate an optimum origami folding sequence by iteratively minimizing the Hausdorff distance, a dissimilarity metric between two geometric shapes. Moreover, an in-house origami simulator is newly developed to visualize the sequence of origami folding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akitaya, H.A., Mitani, J., Kanamori, Y., Fukui, Y.: Generating folding sequences from crease patterns of flat-foldable origami. In: ACM SIGGRAPH 2013 Posters, SIGGRAPH 2013, p. 20:1. ACM, New York (2013). http://doi.acm.org/10.1145/2503385.2503407
An, B., Benbernou, N., Demaine, E.D., Rus, D.: Planning to fold multiple objects from a single self-folding sheet. Robotica 29(1), 87–102 (2011)
Balkcom, D.J., Mason, M.T.: Robotic origami folding. Int. J. Robot. Res. 27(5), 613–627 (2008). doi:10.1177/0278364908090235
Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling salesman problem. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering, pp. 219–239. Springer, Heidelberg (2004). doi:10.1007/978-3-540-39930-8_8
Clerc, M.: Standard Particle Swarm Optimisation, 15 p., September 2012. https://hal.archives-ouvertes.fr/hal-00764996
Deza, M.M., Deza, E.: Encyclopedia of distances. In: Deza, M.M., Deza, E. (eds.) Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00234-2_1
Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R.: A method for building self-folding machines. Science 345(6197), 644–646 (2014). http://science.sciencemag.org/content/345/6197/644
Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J.: Programmable matter by folding. Proc. Natl. Acad. Sci. 107(28), 12441–12445 (2010). http://www.pnas.org/content/107/28/12441.abstract
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995
Margalit, F.: Akira Yoshizawa, 94, modern origami master. N. Y. Times (2005)
Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C.R., Rus, D.: An untethered miniature origami robot that self-folds, walks, swims, and degrades. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1490–1496, May 2015
Miyazaki, S., Yasuda, T., Yokoi, S., Toriwaki, J.: An origami playing simulator in the virtual space. J. Vis. Comput. Animat. 7(1), 25–42 (1996). doi:10.1002/(SICI)1099-1778(199601)7:1<25::AID-VIS134>3.0.CO;2-V
Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4, May 2011
Tachi, T.: Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh. In: Ceccato, C., Hesselgren, L., Pauly, M., Pottmann, H., Wallner, J. (eds.) Advances in Architectural Geometry, pp. 87–102. Springer Vienna, Vienna (2010). doi:10.1007/978-3-7091-0309-8_6
Tachi, T.: Freeform variations of origami. J. Geom. Graph. 14(2), 203–215 (2010)
Tachi, T.: Freeform origami (2010–2016). www.tsg.ne.jp/TT/software/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bui, HD., Jeong, S., Chong, N.Y., Mason, M. (2017). Origami Folding Sequence Generation Using Discrete Particle Swarm Optimization. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-70093-9_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70092-2
Online ISBN: 978-3-319-70093-9
eBook Packages: Computer ScienceComputer Science (R0)