H-PSO-LSTM: Hybrid LSTM Trained by PSO for Online Handwriter Identification | SpringerLink
Skip to main content

H-PSO-LSTM: Hybrid LSTM Trained by PSO for Online Handwriter Identification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

The automatic writer’s recognition from his manuscript is a topical issue handling online writing. Recurrent neural networks (RNNs) are an effective means of solving such problem. More specifically, RNN networks with Long and Short Term Memory (LSTM) represent an ideal mean for writer’s recognition. Intuitively, LSTM networks are based on the gradient method for their learning processes. In addition, an LSTM node presents a complex data processing machine.

Our hybrid approach combining LSTM and PSO (H-PSO-LSTM) presents the purpose of this paper and increases the performance of the network.

Experiments were carried out on a Biometrics Ideal Test (BIT) bilingual database (Chinese and English). The BIT deals with a large number of writers (between 130 and 188). With H-PSO-LSTM, we were able to improve the learning performance accuracy to 91.9% instead of 81.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

    Article  Google Scholar 

  2. Cai, X., Zhang, N., Venayagamoorthy, G.K., Wunsch, D.C.: Time series prediction with recurrent neural networks using a hybrid PSO-EA algorithm. Neurocomputing 70(13), 2342–2353 (2007)

    Article  Google Scholar 

  3. Dhahri, H., Alimi, M.A.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: IJCNN 2006, International Joint Conference on Neural Network, pp. 2938–2943. IEEE, Vancouver (2006)

    Google Scholar 

  4. Boubaker, H., Kherallah, M., Alimi, M.A.: New algorithm of straight or curved baseline detection for short Arabic handwritten writing. In: ICDAR 2009, 10th International Conference on Document Analysis and Recognition, pp. 778–782. IEEE, Barcelona (2009)

    Google Scholar 

  5. Slimane, F., Kanoun, S., Hennebert, J., Alimi, M.A., Ingold, R.: A study on font-family and font-size recognition applied to Arabic word images at ultra-low resolution. Pattern Recogn. Lett. 34(2), 209–218 (2013)

    Article  Google Scholar 

  6. Moussa, S.B., Zahour, A., Benabdelhafid, A., Alimi, M.A.: New features using fractal multi-dimensions for generalized Arabic font recognition. Pattern Recogn. Lett. 31(5), 361–371 (2010)

    Article  Google Scholar 

  7. Bezine, H., Alimi, M.A., Derbel, N.: Handwriting trajectory movements controlled by a beta-elliptic model. In: ICDAR 2003, Proceedings of the International Conference on Document Analysis and Recognition, Scotland, pp. 1228–1232 (2003)

    Google Scholar 

  8. Alimi, M.A.: Evolutionary computation for the recognition of on-line cursive handwriting. IETE J. Res. 48(5), 385–396 (2002)

    Article  Google Scholar 

  9. Baccour, L., Alimi, M.A., John, R.I.: Similarity measures for intuitionistic fuzzy sets: state of the art. J. Intell. Fuzzy Syst. 24(1), 37–49 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Chen, K., Yan, Z., Huo, Q.: A context-sensitive-chunk BPTT approach to training deep LSTM/BLSTM recurrent neural networks for offline handwriting recognition. In: ICDAR 2015, 13th International Conference on Document Analysis and Recognition, France, pp. 411–415. IEEE (2015)

    Google Scholar 

  11. Gers, F.A., Schmidhuber, E.: LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Trans. Neural Netw. 12(6), 1333–1340 (2001)

    Article  Google Scholar 

  12. Zhang, X.Y., Xie, G.S., Liu, C.L., Bengio, Y.: End-to-end online writer identification with recurrent neural network. IEEE Trans. Hum.-Mach. Syst. 74(2), 285–292 (2017)

    Article  Google Scholar 

  13. Elbaati, A., Boubaker, H., Kherallah, M., Ennaji, A., El Abed, H., Alimi, M.A.: Arabic handwriting recognition using restored stroke chronology. In: ICDAR 2009, 10th International Conference on Document Analysis and Recognition, Beijing, China, pp. 411–415. IEEE (2009)

    Google Scholar 

  14. Huang, T.Y., Li, C.J., Hsu, T.W.: Structure and parameter learning algorithm of Jordan type recurrent neural networks. In: IJCNN 2007, International Joint Conference Neural Networks, pp. 1819–1824. IEEE, Barcelona (2007)

    Google Scholar 

  15. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML 2013, International Conference on Machine Learning, Atlanta, pp. 1310–1318 (2013)

    Google Scholar 

  16. Bouaziz, S., Dhahri, H., Alimi, M.A., Abraham, A.: A hybrid learning algorithm for evolving flexible beta basis function neural tree model. Neurocomputing 117, 107–117 (2013)

    Article  Google Scholar 

  17. Zhang, J.R., Zhang, J., Lok, T.M., Lyu, M.R.: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 185(2), 1026–1037 (2007)

    MATH  Google Scholar 

  18. Elloumi, W., Baklouti, N., Abraham, A., Alimi, M.A.: The multi-objective hybridization of Particle Swarm Optimization and fuzzy ant colony optimization. J. Intell. Fuzzy Syst. 27(1), 515–525 (2014)

    MATH  MathSciNet  Google Scholar 

  19. Elloumi, W., Alimi, M.A.: A more efficient MOPSO for optimization. In: AICCSA 2010, ACS/IEEE International Conference on Computer System and Applications, Tunisia, pp. 1–7 (2010)

    Google Scholar 

  20. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. (2016)

    Google Scholar 

  21. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  23. Poli, R., Kennedy, J., Blackwell, T.: Particle Swarm Optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  24. Bali, O., Elloumi, W., Abraham, A., Alimi, M.A.: GPU PSO and ACO applied to TSP for vehicle security tracking. J. Inf. Assur. Secur. 11(6), 369–384 (2016)

    Google Scholar 

  25. Elloumi, W., Alimi, M.A.: Combinatory optimization of ACO and PSO. In: META 2008, Second International Conference on Metaheuristics and Nature Inspired Computing, Tunisia, pp. 1–8 (2008)

    Google Scholar 

  26. Feng, M., Pan, H.: A modified PSO algorithm based on cache replacement algorithm. In: CIS 2014, Computational Intelligence and Security, China, pp. 558–562 (2014)

    Google Scholar 

  27. Elloumi, W., El Abed, H., Abraham, A., Alimi, M.A.: A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP. Appl. Soft Comput. 25, 234–241 (2014)

    Article  Google Scholar 

  28. Chouikhi, N., Ammar, B., Rokbani, N., Alimi, M.A.: PSO-based analysis of Echo State Network parameters for time series forecasting. Appl. Soft Comput. 55, 211–225 (2017)

    Article  Google Scholar 

  29. Sanjeevi, S.G., Nikhila, A.N., Khan, T., Sumathi, G.: Hybrid PSO-SA algorithm for training a neural network for classification. Int. J. Comput. Sci. Eng. Appl. (IJCSEA 2011) 1(6), 73–83 (2011)

    Google Scholar 

  30. Dhahri, H., Alimi, M.A.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: IJCNN 2006, International Joint Conference on Neural Networks, pp. 2938–2943. IEEE, Vancouver (2006)

    Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the Ministry of Higher Education and Scientific Research of Tunisia under the grant agreement number LR11ES48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hounaïda Moalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moalla, H., Elloumi, W., Alimi, A.M. (2017). H-PSO-LSTM: Hybrid LSTM Trained by PSO for Online Handwriter Identification. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics