Abstract
In this paper, we discuss the significance of complex-valued neural-network (CVNN) framework in energy-efficient neural networks, in particular in wave-based reservoir networks. Physical-wave reservoir networks are highly enhanced by CVNNs. From this viewpoint, we also compare the features of reservoir computing and other architectures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This paper concentrates upon a long-span perspective of reservoir networks with CVNNs. Detailed dynamics of CVNNs are given in literature such as Ref. [17].
References
Takeda, S., Nakano, D., Yamane, T., Tanaka, G., Nakane, R., Hirose, A., Nakagawa, S.: Photonic reservoir computing based on laser dynamics with external feedback. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 222–230. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_24
Yamane, T., Takeda, S., Nakano, D., Tanaka, G., Nakane, R., Nakagawa, S., Hirose, A.: Dynamics of reservoir computing at the edge of stability. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 205–212. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_22
Tanaka, G., Nakane, R., Yamane, T., Nakano, D., Takeda, S., Nakagawa, S., Hirose, A.: Exploiting Heterogeneous units for reservoir computing with simple architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 187–194. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_20
Mori, R., Tanaka, G., Nakane, R., Hirose, A., Aihara, K.: Computational performance of echo state networks with dynamic synapses. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 264–271. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_29
Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., Nakano, D.: Wave-based reservoir computing by synchronization of coupled oscillators. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 198–205. Springer, Cham (2015). doi:10.1007/978-3-319-26555-1_23
Hirose, A., Eckmiller, R.: Proposal of frequency-domain multiplexing in optical neural networks. Neurocomputing 10(2), 197–204 (1996)
Hirose, A., Eckmiller, R.: Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain. Appl. Opt. 35(5), 836–843 (1996)
Kawata, S., Hirose, A.: Coherent optical neural network that learns desirable phase values in frequency domain by using multiple optical-path differences. Opt. Lett. 28(24), 2524–2526 (2003)
Kawata, S., Hirose, A.: Frequency-multiplexed logic circuit based on a coherent optical neural network. Appl. Opt. 44(19), 4053–4059 (2005)
Kawata, S., Hirose, A.: Frequency-multiplexing ability of complex-valued Hebbian learning in logic gates. Int. J. Neural Syst. 12(1), 43–51 (2008)
Tanizawa, K., Hirose, A.: Performance analysis of steepest-descent-based feedback control of tunable dispersion compensator for adaptive dispersion compensation in all-optical dynamic routing networks. IEEE/OSA J. Lightwave Technol. 25(4), 1086–1094 (2007)
Tanizawa, K., Hirose, A.: Fast tracking algorithm for adaptive compensation of high-speed PMD variation caused by SOP change in milliseconds. IEEE Photonics Technol. Lett. 21(3), 140–142 (2009)
Hara, T., Hirose, A.: Adaptive plastic-landmine visualizing radar system: effects of aperture synthesis and feature-vector dimension reduction. IEICE Trans. Electron. E88–C(12), 2282–2288 (2005)
Suksmono, A.B., Hirose, A.: Interferometric sar image restoration using Monte-Carlo metropolis method. IEEE Trans. Sig. Process. 50(2), 290–298 (2002)
Shang, F., Hirose, A.: Quaternion neural-network-based PolSAR land classification in poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52(9), 5693–5703 (2014)
Ding, T., Hirose, A.: Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform. IEEE Trans. Neural Netw. Learn. Syst. 25(9), 1686–1695 (2014)
Hirose, A.: Complex-Valued Neural Networks, 2nd edn. Springer, Heidelberg (2012)
Hirose, A., Eckmiller, R.: Behavior control of coherent-type neural networks by carrier-frequency modulation. IEEE Trans. Neural Netw. 7(4), 1032–1034 (1996)
Hirose, A., Kiuchi, M.: Coherent optical associative memory system that processes complex-amplitude information. IEEE Photon. Tech. Lett. 12(5), 564–566 (2000)
Goto, E.: The parametron - a new circuit element which utilizes non-linear reactors. Paper of Technical Group of Electronic Computers and Nonlinear Theory, IECE (1954, in Japanese)
Hirose, A.: Complex-Valued Neural Networks: Theories and Applications. Innovative Intelligence, vol. 5. World Scientific Publishing, Singapore (2003)
Hirose, A. (ed.): Complex-Valued Neural Networks: Advances and Applications. IEEE Press Series on Computational Intelligence. IEEE Press and Wiley, New Jersey (2013)
Mandic, D.P., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters - Noncircularity, Widely Linear and Neural Models. Wiley, Hoboken (2009)
Adali, T., Haykin, S.: Adaptive Signal Processing: Next Generation Solutions. Wiley-IEEE Press, New Jersey (2010)
Aizenberg, I.: Complex-Valued Neural Networks with Multi-Valued Neurons. Studies in Computational Intelligence. Springer, Heidelberg (2011)
Nitta, T.: Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. Information Science Reference, Pennsylvania (2009)
Bayro-Corrochano, E.: Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer, Heidelberg (2010)
Suresh, S., Sundararajan, N., Savitha, R.: Supervised Learning with Complex-valued Neural Networks. Springer, Heidelberg (2013)
Hirose, A., Higo, T., Tanizawa, K.: Efficient generation of holographic movies with frame interpolation using a coherent neural network. IEICE Electron. Expr. 3(19), 417–423 (2006)
Tay, C.S., Tanizawa, K., Hirose, A.: Error reduction in holographic movies using a hybrid learning method in coherent neural networks. Appl. Opt. 47(28), 5221–5228 (2008)
Takeda, M., Kirihara, S., Miyamoto, Y., Sakoda, K., Honda, K.: Localization of electromagnetic waves in three dimensional fractal cavities. Phys. Rev. Lett. 92, 093902 (2004)
Ono, A., Sato, S., Kinjo, M., Nakajima, K.: Study on the performance of neuromorphic adiabatic quantum computation algorithms. In: International Joint Conference on Neural Networks (IJCNN) 2008, Hong Kong, Nakajima, pp. 2508–2512, June 2008
Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23, 541–551 (2012)
Antonik, P., Duport, F., Smerieri, A., Hermans, M., Haelterman, M., Massar, S.: Online training of an opto-electronic reservoir computer. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 233–240. Springer, Cham (2015). doi:10.1007/978-3-319-26535-3_27
Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15, 149–164 (2004)
Takizawa, Y., Shang, F., Hirose, A.: Adaptive land classification and new class generation by unsupervised double-stage learning in poincare sphere space for polarimetric synthetic aperture radars. Neurocomputing 248, 3–10 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hirose, A. et al. (2017). Complex-Valued Neural Networks for Wave-Based Realization of Reservoir Computing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-70093-9_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70092-2
Online ISBN: 978-3-319-70093-9
eBook Packages: Computer ScienceComputer Science (R0)