Dynamic Multi Objective Particle Swarm Optimization Based on a New Environment Change Detection Strategy | SpringerLink
Skip to main content

Dynamic Multi Objective Particle Swarm Optimization Based on a New Environment Change Detection Strategy

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

The dynamic of real-world optimization problems raises new challenges to the traditional particle swarm optimization (PSO). Responding to these challenges, the dynamic optimization has received considerable attention over the past decade. This paper introduces a new dynamic multi-objective optimization based particle swarm optimization (Dynamic-MOPSO). The main idea of this paper is to solve such dynamic problem based on a new environment change detection strategy using the advantage of the particle swarm optimization. In this way, our approach has been developed not just to obtain the optimal solution, but also to have a capability to detect the environment changes. Thereby, Dynamic-MOPSO ensures the balance between the exploration and the exploitation in dynamic research space. Our approach is tested through the most popularized dynamic benchmark’s functions to evaluate its performance as a good method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben Moussa, S., Zahour, A., Benabdelhafid, A., Alimi, M.A.: New features using fractal multi-dimensions for generalized Arabic font recognition. Pattern Recogn. Lett. 31(5), 361–371 (2010)

    Article  Google Scholar 

  2. Bezine, H., Alimi, M.A., Derbel, N.: Handwriting trajectory movements controlled by a bêta-elliptic model. In: 7th IEEE International Conference on Document Analysis and Recognition, pp. 1228–1232. IEEE, Edinburgh, UK (2003)

    Google Scholar 

  3. Alimi, M.A.: Evolutionary computation for the recognition of on-line cursive handwriting. IETE J. Res. 48(5), 385–396 (2002)

    Article  Google Scholar 

  4. Boubaker, H., Kherallah, M., Alimi, M.A.: New algorithm of straight or curved baseline detection for short Arabic handwritten writing. In: 10th International Conference on Document Analysis and Recognition, pp. 778–782. IEEE, Barcelona, Spain (2009)

    Google Scholar 

  5. Slimane, F., Kanoun, S., Hennebert, J., Alimi, M.A., Ingold, R.: A study on font-family and font-size recognition applied to Arabic word images at ultra-low resolution. Pattern Recogn. Lett. 34(2), 209–218 (2013)

    Article  Google Scholar 

  6. Elbaati, A., Boubaker, H., Kherallah, M., Alimi, M.A., Ennaji, A., Abed, H.E.: Arabic handwriting recognition using restored stroke chronology. In: 10th International Conference on Document Analysis and Recognition, pp. 411–415. IEEE, Barcelona, Spain (2009)

    Google Scholar 

  7. Baccour, L., Alimi, M.A., John, R.I.: Similarity measures for intuitionistic fuzzy sets: state of the art. J. Intell. Fuzzy Syst. 24(1), 37–49 (2013)

    MATH  MathSciNet  Google Scholar 

  8. Fdhila, R., Hamdani, T.M., Alimi, M.A.: Distributed MOPSO with a new population subdivision technique for the feature selection. In: The 5th International Symposium Computational Intelligence and Intelligent Informatics, pp. 81–86. IEEE, Floriana, Malta (2011)

    Google Scholar 

  9. Fdhila, R., Hamdani, T.M., Alimi, M.A.: A multi objective particles swarm optimization algorithm for solving the routing pico-satellites problem. In: Systems, Man, and Cybernetics, pp. 1402–1407. IEEE, Seoul, South Korea (2012)

    Google Scholar 

  10. Fdhila, R., Walha, C., Hamdani, T.M., Alimi, M.A.: Hierarchical design for distributed MOPSO using sub-swarms based on a population pareto fronts analysis for the grasp planning problem. In: The 13th International Conference on Hybrid Intelligent Systems, pp. 203–208. IEEE, Gammarth, Tunisia (2013)

    Google Scholar 

  11. Chouikhi, N., Fdhila, R., Ammar, B., Rokbani, N., Alimi, M.A.: Single-and multi-objective particle swarm optimization of reservoir structure in echo state network. In: The International Joint Conference on Neural Networks, pp. 440–447. IEEE, Vancouver, BC, Canada (2016)

    Google Scholar 

  12. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Service Center, Piscataway, New Jersey (1995)

    Google Scholar 

  13. Fdhila, R., Hamdani. T., Alimi. M.A.: A new distributed approach for MOPSO based on population Pareto fronts analysis and Dynamic. In: Systems Man and Cybernetics (SMC), pp. 947–954. IEEE, Istanbul (2010)

    Google Scholar 

  14. Fdhila, R., Hamdani, T.M., Alimi, M.A.: A new hierarchical approach for MOPSO based on dynamic subdivision of the population using Pareto fronts. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 947–954. IEEE, Istanbul, Turkey (2010)

    Google Scholar 

  15. Fdhila, R., Hamdani, T.M., Alimi, M.A.: Population-based distribution of MOPSO with continuous flying pareto fronts particles. J. Inf. Process. Syst. (2016, accepted paper)

    Google Scholar 

  16. Fdhila, R., Ouarda, W., Alimi, M.A., Abraham, A.: A new scheme for face recognition system using a new 2-level parallelized hierarchical multi objective particle swarm optimization algorithm. J. Inf. Assur. Secur. 11(6), 385–394 (2016)

    Google Scholar 

  17. Helbig, M., Engelbrecht, A.P.: Dynamic multi-objective optimization using PSO. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization. SCI, vol. 433, pp. 147–188. Springer, Heidelberg (2013). doi:10.1007/978-3-642-30665-5_8

    Chapter  Google Scholar 

  18. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. In: Transactions on Evolutionary Computation, pp. 425–442. IEEE, USA (2004)

    Google Scholar 

  19. Fdhila, R., Hamdani, T.M., Alimi, M.A.: Optimization algorithms, benchmarks and performance measures: from static to dynamic environment. In: The 15th International Conference on Intelligent Systems Design and Applications, pp. 597–603. IEEE, Marrakech, Morocco (2015)

    Google Scholar 

  20. Aboud, A., Fdhila, R., Alimi, M.A.: MOPSO for dynamic feature selection problem based big data fusion. In: the IEEE International Conference on Systems, Man, and Cybernetics, pp. 003918–003923. IEEE, Budapest, Hungary (2016)

    Google Scholar 

  21. Fdhila, R., Elloumi, W., Hamdani, T.M.: Distributed MOPSO with dynamic Pareto front driven population analysis for TSP problem. In: the 6th International Conference Soft Computing and Pattern Recognition, pp. 294–299. IEEE, Tunis, Tunisia (2014)

    Google Scholar 

  22. Hu, X., Eberhart, R.: Tracking dynamic systems with PSO: where’s the cheese? In: Proceedings of the workshop on particle swarm optimization. Purdue School of Engineering and Technology. IEEE, Indianapolis (2001)

    Google Scholar 

  23. Du, W., Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization. In: Information Sciences, pp. 3096–3109. Elsevier, Huangshan Road, Hefei, Anhui, China (2008)

    Google Scholar 

  24. Branke, J., Kaussler, T., Smidt, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Parmee, I.C. (ed.) Evolutionary Design and Manufacture. Springer, London (2000). doi:10.1007/978-1-4471-0519-0_24

    Google Scholar 

  25. Dhahri, H., Alimi, M.A.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: IEEE International Conference on Neural Networks - Conference Proceedings, pp. 2938–2943. IEEE, Vancouver, BC, Canada (2006)

    Google Scholar 

  26. Bouaziz, S., Dhahri, H., Alimi, M.A., Abraham, A.: A hybrid learning algorithm for evolving flexible beta basis function neural tree model. Neurocomputing 117, 107–117 (2013)

    Article  Google Scholar 

  27. Deb, K., Rao, N.U.B., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70928-2_60

    Chapter  Google Scholar 

  28. Chen, H., Li, M., Chen, X.: Using diversity as an additional-objective in dynamic multiobjective optimization algorithms. In: Second International Symposium on Electronic Commerce and Security, pp. 484–487. IEEE, Nanchang City, China (2009)

    Google Scholar 

  29. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1201–1208. ACM, Seattle, Washington, USA (2006)

    Google Scholar 

  30. Hu, X., Eberhart, R.: Adaptive particle swarm optimisation: detection and response to dynamic systems. In: IEEE Congress on Evolutionary Computation, pp. 1666–1670. IEEE, Honolulu, HI, USA, USA (2002)

    Google Scholar 

  31. Zhou, A., Jin, Y., Zhang, Q.: A population prediction strategy for evolutionary dynamic multiobjective optimization. Trans. Cybern. 44(1), 40–53 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Ministry of Higher Education and Scientific Research of Tunisia under the grant agreement number LR11ES48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlem Aboud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aboud, A., Fdhila, R., Alimi, A.M. (2017). Dynamic Multi Objective Particle Swarm Optimization Based on a New Environment Change Detection Strategy. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics