Abstract
In the medicine practice, due to the privacy and safety of electronic medical record (EMR), the sharing, research and application of EMR have been hindered to a certain extent. Thus, it becomes increasingly important to study semantic electronic medical data integration, so as to meet the needs of doctors and researchers and help them quickly access high-quality information. This paper focuses on the realization of semantic EMRs. It shows how to uses APDG (Advanced Patient Data Generator) to create a set of virtual patient data for depression. Furthermore, it explains how to develop clinical and semantic description rules to construct semantic EMRs for depression and discusses how those generated virtual patient data can be used in the system of Smart Ward for the test and demonstration, without violating the legal issues (e.g., privacy and security) of patient data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sullivan, P.F., Neale, M.C., Kendler, K.S.: Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157(10), 1552–1562 (2000)
Reddy, M.S.: Depression: the disorder and the burden. Indian J. Psychol. Med. 32(1), 1 (2010)
Detmer, D.E., Steen, E.B., Dick, R.S. (eds.): The Computer-Based Patient Record: An Essential Technology for Health Care. National Academies Press, Washington (1997)
Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies. CRC Press, Boca Raton (2009)
European Commission. Semantic interoperability for better health and safer healthcare. Deployment and research roadmap for Europe. ISBN-13: 978-92- 79-11139-6; 2009
Huang, Z., van Harmelen, F., ten Teije, A., et al.: Knowledge-based patient data generation. In: Riaño, D., Lenz, R., Miksch, S., Peleg, M., Reichert, M., ten Teije, A. (eds.) KR4HC/ProHealth 2013. LNCS, vol. 8268, pp. 83–96. Springer, Cham (2013). doi:10.1007/978-3-319-03916-9_7
Bottrighi, A., Chesani, F., Mello, P., Molino, G., Montali, M., Montani, S., Storari, S., Terenziani, P., Torchio, M.: A hybrid approach to clinical guideline and to basic medical knowledge conformance. Proc. Artif. Intell. Med. 5651, 91–95 (2009)
Alexandrou, D., Xenikoudakis, F., Mentzas, G.: Adaptive clinical pathway with semantic web rules. In: Proceedings of the First International Conference on Health Informatics (2008)
Alexandrou, D., Skitsas, I., Mentzas, G.: A holistic environment for the design and execution of self_adaptive clinical pathways. In: Proceeding of the 9th International Conference on Information Technology and Applications in Biomedicine (2009)
Alexandrou, D., Xenikoudakis, F., Mentzas, G.: SEMPATH: semantic adaptive and personalized clinical pathways. In: International Conference on eHealth, Telemedicine and Social Medicine (2009)
Neumann, E., Quan, D.: BioDASH: a semantic web dashboard for drug development. Pac. Symp. Biocomput. 11, 176–187 (2006)
PengLi, X.: Analysis on the development of electronic medical records in China. Chinese Med. Rec. 5, 46–47 (2013). (In Chinese)
Ma, X., Yang, G., Jingjie, Yu.: Analysis on the development and application of domestic electronic medical records. Comput. Appl. Softw. 32(1), 10–12 (2015). (In Chinese)
Li, L., Ma, X.: Guidelines for the prevention and treatment of Depression. Chinese Medical Electronic Audio and Video Publishing House, pp. 10–36 (2015)
Hayrinen, K., Saranto, K., Nykanen, P.: Definition, structure, content, use and impacts of electronic health records: a review of the research literature. Int. J. Med. Inform. 77, 291–304 (2008)
Al-Khalifa, H.S., Davis, H.C.: The evolution of metadata from standards to semantics in E-learning applications. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, pp. 69–72. ACM (2006)
Elkin, P.L., Brown, S.H., Husser, C.S., et al.: Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. In: Mayo Clinic Proceedings. Elsevier, vol. 81(6), pp. 741–748 (2006)
Cheptsov, A., Assel, M., Gallizo, G., et al.: Large knowledge collider. A service-oriented platform for large-scale semantic reasoning. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics (WIMS 2011), ACM International Conference Proceedings Series, Sogndal, Norway (2011)
Singhal, A.: Introducing the Knowledge Graph: Things, Not Strings. Official Google Blog (2012)
Huang, Z., Yang, J., van Harmelen, F., Hu, Q.: Constructing disease-centric knowledge graphs: a case study for depression (short version). In: Proceedings of the 2017 International Conference on Artificial Intelligence in Medicine (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Du, Y., Lin, S., Huang, Z. (2017). Generation of Semantic Patient Data for Depression. In: Siuly, S., et al. Health Information Science. HIS 2017. Lecture Notes in Computer Science(), vol 10594. Springer, Cham. https://doi.org/10.1007/978-3-319-69182-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-69182-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69181-7
Online ISBN: 978-3-319-69182-4
eBook Packages: Computer ScienceComputer Science (R0)