Optimising Social Welfare in Multi-Resource Threshold Task Games | SpringerLink
Skip to main content

Optimising Social Welfare in Multi-Resource Threshold Task Games

  • Conference paper
  • First Online:
PRIMA 2017: Principles and Practice of Multi-Agent Systems (PRIMA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10621))

Abstract

In this paper, we introduce a discrete model for overlapping coalition formation called the multi-resource threshold task game (MR-TTG), which generalises the model introduced in [6]. Furthermore, we define the coalition structure generation (CSG) Problem for MR-TTGs. Towards the efficient solution of CSG problems for MR-TTGs, we provide two reductions to the well-known knapsack problems: the bounded multidimensional knapsack problem and the multiple-choice multidimensional knapsack problem. We then propose two branch and bound algorithms to compare between these reductions. Empirical evaluation shows that the latter reduction is more efficient in solving difficult instances of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A coalition structure is defined as a list rather than a set because different partial coalitions can have the same weights of agents’ contributions.

References

  1. Akçay, Y., Li, H., Xu, S.H.: Greedy algorithm for the general multidimensional knapsack problem. Ann. Oper. Res. 150(1), 17–29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aumann, R.J., Dreze, J.H.: Cooperative games with coalition structures. Int. J. Game Theor. 3(4), 217–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachrach, Y., Meir, R., Jung, K., Kohli, P.: Coalitional structure generation in skill games. In: AAAI, vol. 10, pp. 703–708 (2010)

    Google Scholar 

  4. Bachrach, Y., Rosenschein, J.S.: Coalitional skill games. In: AAMAS, vol. 2, 1023–1030 (2008)

    Google Scholar 

  5. Bing, H., Leblet, J., Simon, G.: Hard multidimensional multiple choice knapsack problems, an empirical study. Comput. Oper. Res. 37(1), 172–181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., Jennings, N.R.: Cooperative games with overlapping coalitions. JAIR 39(1), 179–216 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Dang, V.D., Dash, R.K., Rogers, A., Jennings, N.R.: Overlapping coalition formation for efficient data fusion in multi-sensor networks. In: AAAI, pp. 635–640 (2006)

    Google Scholar 

  8. Dang, V.D., Jennings, N.R.: Coalition structure generation in task-based settings. In: ECAI, pp. 210–214 (2006)

    Google Scholar 

  9. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–288 (1957)

    Article  MathSciNet  Google Scholar 

  10. Di, B., Wang, T., Song, L., Han, Z.: Incentive mechanism for collaborative smartphone sensing using overlapping coalition formation games. In: GLOBECOM, pp. 1705–1710 (2013)

    Google Scholar 

  11. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Math. Oper. Res. 7(4), 515–531 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gillies, D.B.: Solutions to general non-zero-sum games. In: Tucker, A.W., Luce, R.D. (eds.) Contributions to the Theory of Games, vol. 4, pp. 47–85. Princeton University Press, Princeton (1959)

    Google Scholar 

  13. Habib, F.R., Polukarov, M., Gerding, E.H.: Optimising social welfare in multi-resource threshold task games: Appendix (2017). https://eprints.soton.ac.uk/413650/

  14. Pisinger, D.: A fast algorithm for strongly correlated knapsack problems. Discrete Appl. Math. 89(1–3), 197–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sbihi, A.: A best first search exact algorithm for the multiple-choice multidimensional knapsack problem. J. Comb. Optim. 13(4), 337–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shapley, L.S.: A value for \(n\)-person games. In: Tucker, A.W., Kuhn, H.W. (eds.) Contributions to the Theory of Games, vol. 2, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  18. Shehory, O., Kraus, S.: Formation of overlapping coalitions for precedence-ordered task-execution among autonomous agents. In: ICMAS, pp. 330–337 (1996)

    Google Scholar 

  19. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1–2), 165–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tran-Thanh, L., Nguyen, T.D., Rahwan, T., Rogers, A., Jennings, N.R.: An efficient vector-based representation for coalitional games. In: AAAI, pp. 383–389 (2013)

    Google Scholar 

  21. Wang, T., Song, L., Han, Z., Saad, W.: Overlapping coalitional games for collaborative sensing in cognitive radio networks. In: WCNC, pp. 4118–4123. IEEE (2013)

    Google Scholar 

  22. Wooldridge, M., Dunne, P.E.: On the computational complexity of coalitional resource games. J. Artif. Intell. 170(10), 835–871 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zanakis, S.H.: Heuristic 0–1 linear programming: an experimental comparison of three methods. Manag. Sci. 24(1), 91–104 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Z., Song, L., Han, Z., Saad, W.: Coalitional games with overlapping coalitions for interference management in small cell networks. IEEE Trans. Wirel. Commun. 13(5), 2659–2669 (2014)

    Article  Google Scholar 

  25. Zick, Y., Chalkiadakis, G., Elkind, E.: Overlapping coalition formation games: charting the tractability frontier. In: AAMAS, vol. 2, pp. 787–794 (2012)

    Google Scholar 

  26. Zick, Y., Elkind, E.: Arbitrators in overlapping coalition formation games. In: AAMAS, vol. 1, pp. 55–62 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma R. Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Habib, F.R., Polukarov, M., Gerding, E.H. (2017). Optimising Social Welfare in Multi-Resource Threshold Task Games. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds) PRIMA 2017: Principles and Practice of Multi-Agent Systems. PRIMA 2017. Lecture Notes in Computer Science(), vol 10621. Springer, Cham. https://doi.org/10.1007/978-3-319-69131-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69131-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69130-5

  • Online ISBN: 978-3-319-69131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics