Against All Odds: When Logic Meets Probability | SpringerLink
Skip to main content

Against All Odds: When Logic Meets Probability

  • Chapter
  • First Online:
ModelEd, TestEd, TrustEd

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10500))

Abstract

This paper is a light walk along interfaces between logic and probability, triggered by a chance encounter with Ed Brinksma. It is not a research paper, or a literature survey, but a pointer to issues. I discuss both direct combinations of logic and probability and structured ways in which logic can be seen as a qualitative version of probability theory. I end by sketching a concrete program for classifying qualitative scenarios that would lend themselves to simple logical reasoning methods, but I also acknowledge a challenge: the ‘unreasonable effective of probability’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, E.: The Logic of Conditionals. Reidel, Dordrecht (1975)

    Book  MATH  Google Scholar 

  2. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: The topology of belief, belief revision and defeasible knowledge. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 27–40. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40948-6_3

    Chapter  Google Scholar 

  3. Bod, R., Scha, R., Sima’an, K. (eds.): Data-Oriented Parsing. CSLI Publications, Stanford (2003)

    Google Scholar 

  4. Carnap, R.: The Continuum of Inductive Methods. University of Chicago Press, Chicago (1952)

    MATH  Google Scholar 

  5. Christiano, P., Yudkowsky, E., Herreshoff, M., Barasz, M.: Definability of “truth” in probabilistic logic. UC Berkeley and Google (2013)

    Google Scholar 

  6. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Annales de l’Institut Henri Poincaré 7, 1–68 (1937)

    MATH  Google Scholar 

  7. de Witt, J.: Waerdije van lijfrenten naer proportie van losrenten. Letters to the Staten Generael, Den Haag (1671)

    Google Scholar 

  8. Delgrande, J., Renne, B.: The logic of qualitative probability. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2904–2910. AAAI Press, Buenos Aires, Argentina (2015)

    Google Scholar 

  9. Fagin, R.: Probabilities on finite models. J. Symbolic Logic 41(1), 50–58 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gaerdenfors, P.: Qualitative probability as an intensional notion. J. Philos. Logic 4, 171–185 (1975)

    Article  MathSciNet  Google Scholar 

  11. Goodman, N., Frank, M.: Predicting pragmatic reasoning in language games. Science 336, 998 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halpern, J.: Reasoning About Uncertainty. The MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  13. Hamkins, J., Miasnikov, A.: The halting problem is decidable on a set of asymptotic probability one. Notre Dame J. Formal Logic 47(4), 515–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harrison-Trainor, M., Holliday, W.H., Icard, T.: Inferring probability comparisons. Mathematical Social Sciences, to appear

    Google Scholar 

  15. Hintikka, J.: Towards a theory of inductive generalization. In: Bar-Hillel, Y. (ed.) Proceedings of the 1964 Congress for Logic, Methodology and Philosophy of Science, pp. 274–288 (1965)

    Google Scholar 

  16. Holliday, W., Harrison-Trainor, M., Icard, T.: Preferential structures for comparative probabilistic reasoning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 1135–1141 (2017)

    Google Scholar 

  17. Holliday, W., Icard, T.: Measure semantics and qualitative semantics for epistemic modals. In: Proceedings of SALT, vol. 23, pp. 514–534 (2013)

    Google Scholar 

  18. Icard, T.: Pragmatic considerations on comparative probability. Philos. Sci. 83(3), 348–370 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kemeny, J.: Fair bets and inductive probabilities. J. Symbolic Logic 20(3), 263–273 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klein, D., Rendsvig, R.: Convergence, continuity and recurrence in dynamic-epistemic logic. University of Bamberg & University of Copenhagen (2017)

    Google Scholar 

  21. Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets. Ann. Math. Stat. 30(2), 408–419 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  22. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leitgeb, H.: Probability in logic. In: Hajék, A., Hitchcock, C. (eds.) The Oxford Handbook of Probability and Philosophy. Oxford University Press, Oxford (2014)

    Google Scholar 

  24. Leitgeb, H.: The stability theory of belief. Philos. Rev. 123(2), 131–171 (2014)

    Article  Google Scholar 

  25. Lewis, D.: A subjectivist’s guide to objective chance. In: Studies in Inductive Logic and Probability, pp. 263–293. University of California Press, Berkeley (1980)

    Google Scholar 

  26. Lindström, P.: On extensions of elementary logic. Theoria 35, 1–11 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mézard, M., Montanari, A.: Information Physics and Computation. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  28. Vos Savant, M.: The Power of Logical Thinking. St. Martin’s Press, New York (1996)

    Google Scholar 

  29. Scott, D.: Measurement structures and linear inequalities. J. Math. Psychol. 1(2), 233–247 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  30. Skyrms, B.: The Dynamics of Rational Deliberation. Harvard University Press, Cambridge (1990)

    MATH  Google Scholar 

  31. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (eds.) Causation in Decision. Belief Change, and Statistics, vol. II, pp. 105–134. Kluwer, Dordrecht (1988)

    Chapter  Google Scholar 

  32. Stenning, K., Lascarides, A., Calder, J.: Introduction to Cognition and Communication. The MIT Press, Cambridge (2006)

    Google Scholar 

  33. Tversky, A., Kahneman, D.: Probabilistic reasoning. In: Goldman, A. (ed.) Readings in Philosophy and Cognitive Science, pp. 43–68. The MIT Press, Cambridge (1993)

    Google Scholar 

  34. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  35. van Benthem, J.: A problem concerning qualitative probabilistic update, Unpublished manuscript, ILLC, University of Amsterdam (2012)

    Google Scholar 

  36. van Benthem, J.: Logic in Games. The MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  37. van Benthem, J.: Oscillations, logic and dynamical systems. In: Ghosh, S., Szymanik, J. (eds.) The Facts Matter, pp. 9–22. College Publications, London (2015)

    Google Scholar 

  38. van Benthem, J., Gerbrandy, J., Kooi, B.: Dynamic update with probabilities. Stud. Logica. 93(1), 67–96 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. van Benthem, J., Smets, S.: Dynamic logics of belief change. In: van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B. (eds.) Handbook of Logics of Knowledge and Belief, pp. 313–393. College Publications, London (2015)

    Google Scholar 

  40. van der Hoek, W.: Qualitative modalities. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 4(1), 45–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

I thank Thomas Icard and two referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan van Benthem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

van Benthem, J. (2017). Against All Odds: When Logic Meets Probability. In: Katoen, JP., Langerak, R., Rensink, A. (eds) ModelEd, TestEd, TrustEd. Lecture Notes in Computer Science(), vol 10500. Springer, Cham. https://doi.org/10.1007/978-3-319-68270-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68270-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68269-3

  • Online ISBN: 978-3-319-68270-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics