Attribute Selection in a Dispersed Decision-Making System | SpringerLink
Skip to main content

Attribute Selection in a Dispersed Decision-Making System

  • Chapter
  • First Online:
Advances in Feature Selection for Data and Pattern Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 138))

  • 1269 Accesses

Abstract

In this chapter, the use of a method for attribute selection in a dispersed decision-making system is discussed. Dispersed knowledge is understood to be the knowledge that is stored in the form of several decision tables. Different methods for solving the problem of classification based on dispersed knowledge are considered. In the first method, a static structure of the system is used. In more advanced techniques, a dynamic structure is applied. Different types of dynamic structures are analyzed: a dynamic structure with disjoint clusters, a dynamic structure with inseparable clusters and a dynamic structure with negotiations. A method for attribute selection, which is based on the rough set theory, is used in all of the methods described here. The results obtained for five data sets from the UCI Repository are compared and some conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baron, G.: Analysis of multiple classifiers performance for discretized data in authorship attribution. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2017: Proceedings of the 9th KES International Conference on Intelligent Decision Technologies (KES-IDT 2017) – Part II, pp. 33–42. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-59424-8_4

  2. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature extraction and data visualization. Soft Computing 21(8), 2069–2089 (2017). https://doi.org/10.1007/s00500-015-1907-y

  3. Cichocki, A., Mandic, D.P., Phan, A.H., Caiafa, C.F., Zhou, G., Zhao, Q., Lathauwer, L.D.: Tensor decompositions for signal processing applications from two-way to multiway component analysis. CoRR (2014). arXiv:1403.4462

  4. Gatnar, E.: Multiple-Model Approach to Classification and Regression. PWN, Warsaw (2008)

    Google Scholar 

  5. Jackowski, K., Krawczyk, B., Woźniak, M.: Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning. Int. J. Neural Syst. 24(03), 1430,007 (2014). https://doi.org/10.1142/S0129065714300071

  6. Krawczyk, B., Woźniak, M.: Dynamic classifier selection for one-class classification. Knowl. Based Syst. 107, 43–53 (2016). https://doi.org/10.1016/j.knosys.2016.05.054

  7. Kuncheva, L.I.: Combining Pattern Classifiers Methods and Algorithms. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  8. Kuncheva, L.I.: A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Trans. Knowl. Data Eng. 25(3), 494–501 (2013). https://doi.org/10.1109/TKDE.2011.234

  9. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognit. 34(2), 299–314 (2001). https://doi.org/10.1016/S0031-3203(99)00223-X

  10. Müller, J.P., Fischer, K.: Application impact of multi-agent systems and technologies: a survey. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engineering: Reflections on Architectures, Methodologies, Languages, and Frameworks, pp. 27–53. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-54432-3_3

  11. Ng, K.C., Abramson, B.: Probabilistic multi-knowledge-base systems. Appl. Intell. 4(2), 219–236 (1994). https://doi.org/10.1007/BF00872110

  12. Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I, pp. 187–208. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-27794-1_9

  13. Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for ensembles using the multi-objective optimization approach. In: Jin, Y. (ed.) Multi-Objective Machine Learning, pp. 49–74. Springer, Berlin (2006). https://doi.org/10.1007/3-540-33019-4_3

  14. Pawlak, Z.: Rough Sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  15. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  16. Przybyła-Kasperek, M., Wakulicz-Deja, A.: Application of reduction of the set of conditional attributes in the process of global decision-making. Fundam. Inf. 122(4), 327–355 (2013). https://doi.org/10.3233/FI-2013-793

  17. Przybyła-Kasperek, M., Wakulicz-Deja, A.: A dispersed decision-making system - the use of negotiations during the dynamic generation of a system’s structure. Inf. Sci. 288 (C), 194–219 (2014). https://doi.org/10.1016/j.ins.2014.07.032

  18. Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decision-making system with dynamically generated clusters. Inf. Sci. 270, 172–191 (2014). https://doi.org/10.1016/j.ins.2014.02.076

  19. Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decision-making in multi-agent decision-making system with dynamically generated disjoint clusters. Appl. Soft Comput. 40, 603–615 (2016). https://doi.org/10.1016/j.asoc.2015.12.016

  20. Rogova, G.: Combining the results of several neural network classifiers. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster–Shafer Theory of Belief Functions, pp. 683–692. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-44792-4_27

  21. Schneeweiss, C.: Distributed Decision Making. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  22. Schneeweiss, C.: Distributed decision making-a unified approach. Eur. J. Oper. Res. 150(2), 237–252 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shoemaker, L., Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Using classifier ensembles to label spatially disjoint data. Inf. Fusion 9(1), 120–133 (2008). https://doi.org/10.1016/j.inffus.2007.08.00 (Special issue on Applications of Ensemble Methods)

  24. Skowron, A.: Rough Set Exploration System. http://logic.mimuw.edu.pl/rses/. Accessed 01 March 2017

  25. Skowron, A., Jankowski, A., Świniarski, R.W.: Foundations of rough sets. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 331–348. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-43505-2_21

  26. Ślȩzak, D., Janusz, A.: Ensembles of bireducts: towards robust classification and simple representation. In:. Kim, T.H, Adeli, H., Ślȩzak, D., Sandnes, F.E., Song, X., Chung, K.I., Arnett, K.P. (eds.) Future Generation Information Technology: Third International Conference, FGIT 2011 in Conjunction with GDC 2011, Jeju Island, Korea, December 8–10, 2011. Proceedings, pp. 64–77. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27142-7_9

  27. Ślȩzak, D., Widz, S.: Is it important which rough-set-based classifier extraction and voting criteria are applied together? In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu Q. (eds.) Rough Sets and Current Trends in Computing: 7th International Conference, RSCTC 2010, Warsaw, Poland, June 28-30,2010. Proceedings, pp. 187–196. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13529-3_21

  28. Słowiński, R., Greco, S., Matarazzo, B.: Rough-set-based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 557–609. Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7_19

  29. Stasiak, B., Mońko, J., Niewiadomski, A.: Note onset detection in musical signals via neural-network-based multi-odf fusion. Int. J. Appl. Math. Comput. Sci. 26(1), 203–213 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wakulicz-Deja, A., Przybyła-Kasperek, M.: Hierarchical multi-agent system. In: Recent Advances in Intelligent Information Systems, pp. 615–628. Academic Publishing House EXIT (2009)

    Google Scholar 

  31. Wang, S., Pedrycz, W., Zhu, Q., Zhu, W.: Subspace learning for unsupervised feature selection via matrix factorization. Pattern Recognit. 48(1), 10–19 (2015). https://doi.org/10.1016/j.patcog.2014.08.004

  32. Wróblewski, J.: Ensembles of classifiers based on approximate reducts. Fundam. Inf. 47(3–4), 351–360 (2001)

    Google Scholar 

  33. Wu, Y., Zhang, A.: Feature selection for classifying high-dimensional numerical data. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, p. II. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Przybyła-Kasperek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Przybyła-Kasperek, M. (2018). Attribute Selection in a Dispersed Decision-Making System. In: Stańczyk, U., Zielosko, B., Jain, L. (eds) Advances in Feature Selection for Data and Pattern Recognition. Intelligent Systems Reference Library, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-67588-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67588-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67587-9

  • Online ISBN: 978-3-319-67588-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics