Abstract
In this chapter, the use of a method for attribute selection in a dispersed decision-making system is discussed. Dispersed knowledge is understood to be the knowledge that is stored in the form of several decision tables. Different methods for solving the problem of classification based on dispersed knowledge are considered. In the first method, a static structure of the system is used. In more advanced techniques, a dynamic structure is applied. Different types of dynamic structures are analyzed: a dynamic structure with disjoint clusters, a dynamic structure with inseparable clusters and a dynamic structure with negotiations. A method for attribute selection, which is based on the rough set theory, is used in all of the methods described here. The results obtained for five data sets from the UCI Repository are compared and some conclusions are drawn.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baron, G.: Analysis of multiple classifiers performance for discretized data in authorship attribution. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2017: Proceedings of the 9th KES International Conference on Intelligent Decision Technologies (KES-IDT 2017) – Part II, pp. 33–42. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-59424-8_4
Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature extraction and data visualization. Soft Computing 21(8), 2069–2089 (2017). https://doi.org/10.1007/s00500-015-1907-y
Cichocki, A., Mandic, D.P., Phan, A.H., Caiafa, C.F., Zhou, G., Zhao, Q., Lathauwer, L.D.: Tensor decompositions for signal processing applications from two-way to multiway component analysis. CoRR (2014). arXiv:1403.4462
Gatnar, E.: Multiple-Model Approach to Classification and Regression. PWN, Warsaw (2008)
Jackowski, K., Krawczyk, B., Woźniak, M.: Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning. Int. J. Neural Syst. 24(03), 1430,007 (2014). https://doi.org/10.1142/S0129065714300071
Krawczyk, B., Woźniak, M.: Dynamic classifier selection for one-class classification. Knowl. Based Syst. 107, 43–53 (2016). https://doi.org/10.1016/j.knosys.2016.05.054
Kuncheva, L.I.: Combining Pattern Classifiers Methods and Algorithms. Wiley, New York (2004)
Kuncheva, L.I.: A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Trans. Knowl. Data Eng. 25(3), 494–501 (2013). https://doi.org/10.1109/TKDE.2011.234
Kuncheva, L.I., Bezdek, J.C., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognit. 34(2), 299–314 (2001). https://doi.org/10.1016/S0031-3203(99)00223-X
Müller, J.P., Fischer, K.: Application impact of multi-agent systems and technologies: a survey. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engineering: Reflections on Architectures, Methodologies, Languages, and Frameworks, pp. 27–53. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-54432-3_3
Ng, K.C., Abramson, B.: Probabilistic multi-knowledge-base systems. Appl. Intell. 4(2), 219–236 (1994). https://doi.org/10.1007/BF00872110
Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I, pp. 187–208. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-27794-1_9
Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for ensembles using the multi-objective optimization approach. In: Jin, Y. (ed.) Multi-Objective Machine Learning, pp. 49–74. Springer, Berlin (2006). https://doi.org/10.1007/3-540-33019-4_3
Pawlak, Z.: Rough Sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)
Przybyła-Kasperek, M., Wakulicz-Deja, A.: Application of reduction of the set of conditional attributes in the process of global decision-making. Fundam. Inf. 122(4), 327–355 (2013). https://doi.org/10.3233/FI-2013-793
Przybyła-Kasperek, M., Wakulicz-Deja, A.: A dispersed decision-making system - the use of negotiations during the dynamic generation of a system’s structure. Inf. Sci. 288 (C), 194–219 (2014). https://doi.org/10.1016/j.ins.2014.07.032
Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decision-making system with dynamically generated clusters. Inf. Sci. 270, 172–191 (2014). https://doi.org/10.1016/j.ins.2014.02.076
Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decision-making in multi-agent decision-making system with dynamically generated disjoint clusters. Appl. Soft Comput. 40, 603–615 (2016). https://doi.org/10.1016/j.asoc.2015.12.016
Rogova, G.: Combining the results of several neural network classifiers. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster–Shafer Theory of Belief Functions, pp. 683–692. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-44792-4_27
Schneeweiss, C.: Distributed Decision Making. Springer, Berlin (2003)
Schneeweiss, C.: Distributed decision making-a unified approach. Eur. J. Oper. Res. 150(2), 237–252 (2003)
Shoemaker, L., Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Using classifier ensembles to label spatially disjoint data. Inf. Fusion 9(1), 120–133 (2008). https://doi.org/10.1016/j.inffus.2007.08.00 (Special issue on Applications of Ensemble Methods)
Skowron, A.: Rough Set Exploration System. http://logic.mimuw.edu.pl/rses/. Accessed 01 March 2017
Skowron, A., Jankowski, A., Świniarski, R.W.: Foundations of rough sets. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 331–348. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-43505-2_21
Ślȩzak, D., Janusz, A.: Ensembles of bireducts: towards robust classification and simple representation. In:. Kim, T.H, Adeli, H., Ślȩzak, D., Sandnes, F.E., Song, X., Chung, K.I., Arnett, K.P. (eds.) Future Generation Information Technology: Third International Conference, FGIT 2011 in Conjunction with GDC 2011, Jeju Island, Korea, December 8–10, 2011. Proceedings, pp. 64–77. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27142-7_9
Ślȩzak, D., Widz, S.: Is it important which rough-set-based classifier extraction and voting criteria are applied together? In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu Q. (eds.) Rough Sets and Current Trends in Computing: 7th International Conference, RSCTC 2010, Warsaw, Poland, June 28-30,2010. Proceedings, pp. 187–196. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13529-3_21
Słowiński, R., Greco, S., Matarazzo, B.: Rough-set-based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 557–609. Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7_19
Stasiak, B., Mońko, J., Niewiadomski, A.: Note onset detection in musical signals via neural-network-based multi-odf fusion. Int. J. Appl. Math. Comput. Sci. 26(1), 203–213 (2016)
Wakulicz-Deja, A., Przybyła-Kasperek, M.: Hierarchical multi-agent system. In: Recent Advances in Intelligent Information Systems, pp. 615–628. Academic Publishing House EXIT (2009)
Wang, S., Pedrycz, W., Zhu, Q., Zhu, W.: Subspace learning for unsupervised feature selection via matrix factorization. Pattern Recognit. 48(1), 10–19 (2015). https://doi.org/10.1016/j.patcog.2014.08.004
Wróblewski, J.: Ensembles of classifiers based on approximate reducts. Fundam. Inf. 47(3–4), 351–360 (2001)
Wu, Y., Zhang, A.: Feature selection for classifying high-dimensional numerical data. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, p. II. IEEE (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Przybyła-Kasperek, M. (2018). Attribute Selection in a Dispersed Decision-Making System. In: Stańczyk, U., Zielosko, B., Jain, L. (eds) Advances in Feature Selection for Data and Pattern Recognition. Intelligent Systems Reference Library, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-67588-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-67588-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67587-9
Online ISBN: 978-3-319-67588-6
eBook Packages: EngineeringEngineering (R0)