Abstract
Accurate estimation of intracranial volume (ICV) is key in neuro-imaging-based volumetric studies, since estimation errors directly propagate to the ICV-corrected volumes used in subsequent analyses. ICV estimation through registration to a reference atlas has the advantage of not requiring manually delineated data, and can thus be applied to populations for which labeled data might be inexistent or scarce, e.g., preterm born animal models. However, such method is not robust, since the estimation depends on a single registration. Here we present a groupwise, template-free ICV estimation method that overcomes this limitation. The method quickly aligns pairs of images using linear registration at low resolution, and then computes the most likely ICV values using a Bayesian framework. The algorithm is robust against single registration errors, which are corrected by registrations to other subjects. The algorithm was evaluated on a pilot dataset of rabbit brain MRI (\(N=7\)), in which the estimated ICV was highly correlated (\(\rho =0.99\)) with ground truth values derived from manual delineations. Additional regression and discrimination experiments with human hippocampal volume on a subset of ADNI (\(N=150\)) yielded reduced sample sizes and increased classification accuracy, compared with using a reference atlas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sanfilipo, M.P., Benedict, R.H., Zivadinov, R., Bakshi, R.: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22(4), 1732–1743 (2004)
Lemieux, L., Hagemann, G., Krakow, K., Woermann, F.G.: Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magn. Reson. Med. 42(1), 127–135 (1999)
Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P., Federico, A., De Stefano, N.: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1), 479–489 (2002)
Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., Snyder, A.Z.: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23(2), 724–738 (2004)
Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)
Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)
Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, New York (2011)
Keihaninejad, S., Heckemann, R.A., Fagiolo, G., Symms, M.R., Hajnal, J.V., Hammers, A.: A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). Neuroimage 50(4), 1427–1437 (2010)
Huo, Y., Asman, A.J., Plassard, A.J., Landman, B.A.: Simultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusion. Hum. Brain Mapp. 2, 599–616 (2017)
Manjón, J.V., Eskildsen, S.F., Coupé, P., Romero, J.E., Collins, D.L., Robles, M.: Nonlocal intracranial cavity extraction. Int. J. Biomed. Imaging 2014, 11 p. (2014). Article ID 820205. doi:10.1155/2014/820205
Kuklisova-Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S.J., Doria, V., Serag, A., Gousias, I.S., Boardman, J.P., Rutherford, M.A., Edwards, A.D., et al.: A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4), 2750–2763 (2011)
Licandro, R., Langs, G., Kasprian, G., Sablatnig, R., Prayer, D., Schwartz, E.: Longitudinal diffeomorphic atlas learning for fetal brain tissue labeling using geodesic regression. In: Brain 2011 (2011)
Tyson, J.E., Parikh, N.A., Langer, J., Green, C., Higgins, R.D.: Intensive care for extreme prematurity moving beyond gestational age. N. Engl. J. Med. 358(16), 1672–1681 (2008)
Blencowe, H., Cousens, S., Oestergaard, M.Z., Chou, D., Moller, A.B., Narwal, R., Adler, A., Garcia, C.V., Rohde, S., Say, L., et al.: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379(9832), 2162–2172 (2012)
Liu, L., Johnson, H.L., Cousens, S., Perin, J., Scott, S., Lawn, J.E., Rudan, I., Campbell, H., Cibulskis, R., Li, M., et al.: Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379(9832), 2151–2161 (2012)
Muñoz-Moreno, E., Arbat-Plana, A., Batalle, D., Soria, G., Illa, M., Prats-Galino, A., Eixarch, E., Gratacos, E.: A magnetic resonance image based atlas of the rabbit brain for automatic parcellation. PLoS ONE 8(7), e67418 (2013)
Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain (1994)
Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003–024003 (2014)
Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)
Steiger, J.H.: Tests for comparing elements of a correlation matrix. Psychol. Bull. 87(2), 245–251 (1980)
DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)
Acknowledgement
Supported by ERC (677697), EPSRC (EP/L016478/1, EP/M506448/1), Wellcome/EPSRC (203145Z/16/Z, WT101957, NS/A000027/1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix: Details of the Inference Algorithm
Appendix: Details of the Inference Algorithm
Replacing \(p(\varvec{S} | c, \varvec{v})\) and \(p(c | \alpha ,\beta )\) (Fig. 1b) in the first integral of Eq. 1:
Defining \(\alpha ' = \alpha + |\mathcal {S}|\) and \(\beta '=\beta +\sum _{(i,j)\in \mathcal {S}} |S_{ij}-v_i+v_j|\), Eq. 3 becomes:
as the integral is over the probability density of \(IG(\alpha ',\beta ')\) and thus equal to 1.
For the second integral in Eq. 1 (over \(\mu \) and \(\sigma ^2\)), substitution of the expressions for the probabilities (again, see Fig. 1b in the paper) yields:
We now define \(m'=(nm+N\bar{v})/(n+N)\), \(n'=n+N\), \(a'=a+\frac{N}{2}\), and:
where \(\bar{v}\) is the average of \(\varvec{v}\). Then, Eq. 5 becomes:
since the integral is over the probability density function of \(NIG(m',n',a',b')\) and hence equal to 1.
Combining Eqs. 4 and 6, the problem in Eq. 1 becomes:
where z groups the terms independent of \(\varvec{v}\). Taking the negated logarithm:
Substituting \(a'\), \(b'\), \(\alpha '\) and \(\beta '\) into this equation, and defining \(Z=\log z\), we finally obtain the cost function in Eq. 2.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Iglesias, J.E. et al. (2017). Template-Free Estimation of Intracranial Volume: A Preterm Birth Animal Model Study. In: Cardoso, M., et al. Fetal, Infant and Ophthalmic Medical Image Analysis. OMIA FIFI 2017 2017. Lecture Notes in Computer Science(), vol 10554. Springer, Cham. https://doi.org/10.1007/978-3-319-67561-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-67561-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67560-2
Online ISBN: 978-3-319-67561-9
eBook Packages: Computer ScienceComputer Science (R0)