Template-Free Estimation of Intracranial Volume: A Preterm Birth Animal Model Study | SpringerLink
Skip to main content

Template-Free Estimation of Intracranial Volume: A Preterm Birth Animal Model Study

  • Conference paper
  • First Online:
Fetal, Infant and Ophthalmic Medical Image Analysis (OMIA 2017, FIFI 2017)

Abstract

Accurate estimation of intracranial volume (ICV) is key in neuro-imaging-based volumetric studies, since estimation errors directly propagate to the ICV-corrected volumes used in subsequent analyses. ICV estimation through registration to a reference atlas has the advantage of not requiring manually delineated data, and can thus be applied to populations for which labeled data might be inexistent or scarce, e.g., preterm born animal models. However, such method is not robust, since the estimation depends on a single registration. Here we present a groupwise, template-free ICV estimation method that overcomes this limitation. The method quickly aligns pairs of images using linear registration at low resolution, and then computes the most likely ICV values using a Bayesian framework. The algorithm is robust against single registration errors, which are corrected by registrations to other subjects. The algorithm was evaluated on a pilot dataset of rabbit brain MRI (\(N=7\)), in which the estimated ICV was highly correlated (\(\rho =0.99\)) with ground truth values derived from manual delineations. Additional regression and discrimination experiments with human hippocampal volume on a subset of ADNI (\(N=150\)) yielded reduced sample sizes and increased classification accuracy, compared with using a reference atlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanfilipo, M.P., Benedict, R.H., Zivadinov, R., Bakshi, R.: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22(4), 1732–1743 (2004)

    Article  Google Scholar 

  2. Lemieux, L., Hagemann, G., Krakow, K., Woermann, F.G.: Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magn. Reson. Med. 42(1), 127–135 (1999)

    Article  Google Scholar 

  3. Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P., Federico, A., De Stefano, N.: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1), 479–489 (2002)

    Article  Google Scholar 

  4. Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., Snyder, A.Z.: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23(2), 724–738 (2004)

    Article  Google Scholar 

  5. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  6. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  7. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)

    Article  Google Scholar 

  8. Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, New York (2011)

    Google Scholar 

  9. Keihaninejad, S., Heckemann, R.A., Fagiolo, G., Symms, M.R., Hajnal, J.V., Hammers, A.: A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). Neuroimage 50(4), 1427–1437 (2010)

    Article  Google Scholar 

  10. Huo, Y., Asman, A.J., Plassard, A.J., Landman, B.A.: Simultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusion. Hum. Brain Mapp. 2, 599–616 (2017)

    Article  Google Scholar 

  11. Manjón, J.V., Eskildsen, S.F., Coupé, P., Romero, J.E., Collins, D.L., Robles, M.: Nonlocal intracranial cavity extraction. Int. J. Biomed. Imaging 2014, 11 p. (2014). Article ID 820205. doi:10.1155/2014/820205

  12. Kuklisova-Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S.J., Doria, V., Serag, A., Gousias, I.S., Boardman, J.P., Rutherford, M.A., Edwards, A.D., et al.: A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4), 2750–2763 (2011)

    Article  Google Scholar 

  13. Licandro, R., Langs, G., Kasprian, G., Sablatnig, R., Prayer, D., Schwartz, E.: Longitudinal diffeomorphic atlas learning for fetal brain tissue labeling using geodesic regression. In: Brain 2011 (2011)

    Google Scholar 

  14. Tyson, J.E., Parikh, N.A., Langer, J., Green, C., Higgins, R.D.: Intensive care for extreme prematurity moving beyond gestational age. N. Engl. J. Med. 358(16), 1672–1681 (2008)

    Article  Google Scholar 

  15. Blencowe, H., Cousens, S., Oestergaard, M.Z., Chou, D., Moller, A.B., Narwal, R., Adler, A., Garcia, C.V., Rohde, S., Say, L., et al.: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379(9832), 2162–2172 (2012)

    Article  Google Scholar 

  16. Liu, L., Johnson, H.L., Cousens, S., Perin, J., Scott, S., Lawn, J.E., Rudan, I., Campbell, H., Cibulskis, R., Li, M., et al.: Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379(9832), 2151–2161 (2012)

    Article  Google Scholar 

  17. Muñoz-Moreno, E., Arbat-Plana, A., Batalle, D., Soria, G., Illa, M., Prats-Galino, A., Eixarch, E., Gratacos, E.: A magnetic resonance image based atlas of the rabbit brain for automatic parcellation. PLoS ONE 8(7), e67418 (2013)

    Article  Google Scholar 

  18. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain (1994)

    Google Scholar 

  19. Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003–024003 (2014)

    Article  Google Scholar 

  20. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  21. Steiger, J.H.: Tests for comparing elements of a correlation matrix. Psychol. Bull. 87(2), 245–251 (1980)

    Article  Google Scholar 

  22. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

Supported by ERC (677697), EPSRC (EP/L016478/1, EP/M506448/1), Wellcome/EPSRC (203145Z/16/Z, WT101957, NS/A000027/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Eugenio Iglesias .

Editor information

Editors and Affiliations

Appendix: Details of the Inference Algorithm

Appendix: Details of the Inference Algorithm

Replacing \(p(\varvec{S} | c, \varvec{v})\) and \(p(c | \alpha ,\beta )\) (Fig. 1b) in the first integral of Eq. 1:

$$\begin{aligned} \int _c (2c)^{-|\mathcal {S}|} \exp \left( - \frac{1}{c} \sum _{(i,j)\in \mathcal {S}} |S_{ij}-v_i+v_j| \right) \frac{\beta ^\alpha }{\varGamma (\alpha )} c^{-\alpha -1} \exp (-\beta /c) dc. \end{aligned}$$
(3)

Defining \(\alpha ' = \alpha + |\mathcal {S}|\) and \(\beta '=\beta +\sum _{(i,j)\in \mathcal {S}} |S_{ij}-v_i+v_j|\), Eq. 3 becomes:

$$\begin{aligned} \frac{1}{2^{|\mathcal {S}|}} \frac{\varGamma (\alpha ')}{\varGamma (\alpha )} \frac{\beta ^\alpha }{\beta '^{\alpha '}} \int _c \frac{\beta '^{\alpha '}}{\varGamma (\alpha ')} c^{-\alpha '-1} \exp (-\beta '/c) dc = \frac{1}{2^{|\mathcal {S}|}} \frac{\varGamma (\alpha ')}{\varGamma (\alpha )} \frac{\beta ^\alpha }{\beta '^{\alpha '}}, \end{aligned}$$
(4)

as the integral is over the probability density of \(IG(\alpha ',\beta ')\) and thus equal to 1.

For the second integral in Eq. 1 (over \(\mu \) and \(\sigma ^2\)), substitution of the expressions for the probabilities (again, see Fig. 1b in the paper) yields:

$$\begin{aligned} \int _\mu&\int _{\sigma ^2} \frac{1}{(2\pi \sigma ^2)^{N/2}} \exp \left( -\frac{1}{2\sigma ^2} \sum _{i=1}^N (v_i-\mu )^2 \right) \ldots \nonumber \\&\times \frac{b^{a}}{\varGamma \left( a\right) } \left( \sigma ^2\right) ^{-a-1} \exp \left( -b/\sigma ^2\right) \frac{\sqrt{n}}{\sqrt{2\pi \sigma ^2}} \exp \left[ -\frac{n}{2\sigma ^2}\left( \mu - m\right) ^2\right] d\mu d\sigma ^2. \end{aligned}$$
(5)

We now define \(m'=(nm+N\bar{v})/(n+N)\), \(n'=n+N\), \(a'=a+\frac{N}{2}\), and:

$$ b' = b+\frac{1}{2} \sum _{i=1}^N (v_i-\bar{v})^2+\frac{nN}{n+N} \frac{(\bar{v}-m)^2}{2}, $$

where \(\bar{v}\) is the average of \(\varvec{v}\). Then, Eq. 5 becomes:

$$\begin{aligned} \int _\mu \int _{\sigma ^2}&\frac{b'^{a'}}{\varGamma \left( a'\right) } \left( \sigma ^2\right) ^{-a'-1} \exp \left( -b'/\sigma ^2\right) \frac{\sqrt{n'}}{\sqrt{2\pi \sigma ^2}} \exp \left[ -\frac{n'}{2\sigma ^2}\left( \mu - m'\right) ^2\right] d\mu d\sigma ^2 \ldots \nonumber \\&\times \frac{1}{(2\pi )^{N/2}} \sqrt{\frac{n}{n'}} \frac{b^a}{b'^{a'}} \frac{\varGamma (a')}{\varGamma (a)} = \frac{1}{(2\pi )^{N/2}} \sqrt{\frac{n}{n'}} \frac{b^a}{b'^{a'}} \frac{\varGamma (a')}{\varGamma (a)}, \end{aligned}$$
(6)

since the integral is over the probability density function of \(NIG(m',n',a',b')\) and hence equal to 1.

Combining Eqs. 4 and 6, the problem in Eq. 1 becomes:

where z groups the terms independent of \(\varvec{v}\). Taking the negated logarithm:

$$ \mathcal {C} = \alpha ' \log \beta ' + a' \log b' + \log z. $$

Substituting \(a'\), \(b'\), \(\alpha '\) and \(\beta '\) into this equation, and defining \(Z=\log z\), we finally obtain the cost function in Eq. 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Iglesias, J.E. et al. (2017). Template-Free Estimation of Intracranial Volume: A Preterm Birth Animal Model Study. In: Cardoso, M., et al. Fetal, Infant and Ophthalmic Medical Image Analysis. OMIA FIFI 2017 2017. Lecture Notes in Computer Science(), vol 10554. Springer, Cham. https://doi.org/10.1007/978-3-319-67561-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67561-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67560-2

  • Online ISBN: 978-3-319-67561-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics