LEAF: Using Semantic Based Experience to Prevent Task Failures | SpringerLink
Skip to main content

LEAF: Using Semantic Based Experience to Prevent Task Failures

  • Conference paper
  • First Online:
Field and Service Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 5))

  • 3781 Accesses

Abstract

Using service robots at home is becoming more and more popular in order to help people in their life routine. Such robots are required to do various tasks, from user notification to devices manipulation. However, in such complex environments, robots sometimes fail to achieve one task. Failing is problematic as it is unpleasant for the user and may cause critical situations. Therefore, understanding and preventing failures is a challenging need. In this paper, we propose LEAF, an experience based approach to prevent task failure. LEAF relies on both semantic context knowledge through ontology and user validation, allowing LEAF to have an accurate understanding of failures. It then uses this new knowledge to adapt a Hierarchical Task Network (HTN) in order to prevent selecting tasks that have a high risk of failure in the plan. LEAF was tested in the Hadaptic platform and evaluated using a randomly generated dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://jena.apache.org/documentation/inference/.

  2. 2.

    https://jena.apache.org/.

  3. 3.

    https://github.com/Nath-R/LEAF.

  4. 4.

    http://wiki.ros.org/indigo.

  5. 5.

    http://hadaptic.telecom-sudparis.eu.

  6. 6.

    http://nara.wp.tem-tsp.eu/what-is-my-work-about/leaf/.

  7. 7.

    https://evident.telecom-sudparis.eu.

References

  1. Al-Moadhen, A., Qiu, R., Packianather, M., Ji, Z., Setchi, R.: Integrating robot task planner with common-sense knowledge base to improve the efficiency of planning. Procedia Comput. Sci. 22, 211–220 (2013)

    Google Scholar 

  2. Bouneffouf, D.: Drars, a dynamic risk-aware recommender system. Ph.D. thesis, Institut National des Télécommunications (2013)

    Google Scholar 

  3. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3), 189–208 (1972)

    Google Scholar 

  4. Garivier, A., Moulines, E.: On upper-confidence bound policies for switching bandit problems. In: International Conference on Algorithmic Learning Theory, pp. 174–188. Springer (2011)

    Google Scholar 

  5. Georgievski, I., Aiello, M.: An overview of hierarchical task network planning (2014). arXiv:1403.7426

  6. Ghezala, M.W.B.: Compréhension dynamique du contexte pour l’aide à l’opérateur en robotique. Ph.D. thesis, Institut National des Télécommunications (2015)

    Google Scholar 

  7. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of nao humanoid. In: IEEE International Conference on Robotics and Automation, 2009 (ICRA’09), pp. 769–774. IEEE (2009)

    Google Scholar 

  8. Hanheide, M., Göbelbecker, M., Horn, G.S., Pronobis, A., Sjöö, K., Aydemir, A., Jensfelt, P., Gretton, C., Dearden, R., Janicek, M., et al.: Robot task planning and explanation in open and uncertain worlds. Artif. Intell. (2015)

    Google Scholar 

  9. Kapotoglu, M., Koc, C., Sariel, S.: Robots avoid potential failures through experience-based probabilistic planning. In: 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2015, vol. 2, pp. 111–120. IEEE (2015)

    Google Scholar 

  10. Lallement, R., De Silva, L., Alami, R.: Hatp: An htn planner for robotics (2014). arXiv:1405.5345

  11. Lassila, O., Swick, R.R., et al.: Resource description framework (rdf) model and syntax specification (1998)

    Google Scholar 

  12. Mahajan, A., Teneketzis, D.: Multi-armed bandit problems. Foundations and Applications of Sensor Management pp. 121–151 (2008)

    Google Scholar 

  13. Milliez, G., Lallement, R., Fiore, M., Alami, R.: Using human knowledge awareness to adapt collaborative plan generation, explanation and monitoring. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction, pp. 43–50. IEEE Press (2016)

    Google Scholar 

  14. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: Shop2: An htn planning system. J. Artif. Intell. Res. (JAIR) 20, 379–404 (2003)

    MATH  Google Scholar 

  15. Ramoly, N., Bouzeghoub, A., Finance, B.: Context-aware planning by refinement for personal robots in smart homes. In: Proceedings of ISR 2016: 47st International Symposium on Robotics, pp. 1–8. VDE (2016)

    Google Scholar 

  16. Sariel, S., Yildiz, P., Karapinar, S., Altan, D., Kapotoglu, M.: Robust task execution through experience-based guidance for cognitive robots. In: International Conference on Advanced Robotics (ICAR), 2015, pp. 663–668. IEEE (2015)

    Google Scholar 

  17. Weser, M., Off, D., Zhang, J.: Htn robot planning in partially observable dynamic environments. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 1505–1510. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Ramoly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramoly, N., Sfar, H., Bouzeghoub, A., Finance, B. (2018). LEAF: Using Semantic Based Experience to Prevent Task Failures. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67361-5_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67360-8

  • Online ISBN: 978-3-319-67361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics