Restricted Equivalence Function on L([0, 1]) | SpringerLink
Skip to main content

Restricted Equivalence Function on L([0, 1])

  • Conference paper
  • First Online:
Fuzzy Logic in Intelligent System Design (NAFIPS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 648))

Included in the following conference series:

Abstract

It is know from the literature that interval-valued equivalence functions are not decomposable. In order to solve that problem and give a characterization for interval-valued restricted equivalence functions by means of aggregating interval fuzzy implication we consider an admissible order on the lattice L([0, 1]). Also, we discuss about some other properties of those operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A non-empty set P endowed with a partial order \(\leqslant _P\) is called a partial order set or for short a poset.

  2. 2.

    An element e is called an equilibrium point if \(N(e) = e\).

References

  1. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  2. Baczyński, M.: Residual implications revised. Notes on the Smets-Magrez theorem. Fuzzy Sets Syst. 145(2), 267–277 (2004)

    Article  MATH  Google Scholar 

  3. Baddeley, A.J.: An error metric for images. In: Robust Computer Vision, pp. 59–78. Wichmann, Karlsruhe (1992)

    Google Scholar 

  4. Bedregal, B.: On interval fuzzy negations. Fuzzy Sets Syst. 161, 2290–2313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedregal, B.C., Beliakov, G., Bustince, H., Fernandez, J., Pradera, A., Reiser, R.: (S,N)-Implications on bounded lattices. In: Baczyński, M., et al. (eds.) Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300, pp. 101–124. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Beliakov, G.: Construction of aggregation functions from data using linear programming. Fuzzy Sets Syst. 160(1), 65–75 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bustince, H., Barrenechea, E., Pagola, M.: Restricted equivalence functions. Fuzzy Sets Syst. 157, 2333–2346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bustince, H., Barrenechea, E., Pagola, M.: Relationship between restricted dissimilarity functions, restricted equivalence functions and normal \(E_{N}\)-functions: Image thresholding invariant. Pattern Recogn. Lett. 29, 525–536 (2008)

    Article  Google Scholar 

  9. Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets Syst. 134(2), 209–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bustince, H., Fernadez, J., Mesiar, R., Pradera, A., Beliakov, G.: Restricted dissimilarity functions and penalty functions. In: EUSFLAT-LFA 2011, Aix-les-Bains, France (2011)

    Google Scholar 

  11. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets and Systems, (2012, submitted)

    Google Scholar 

  12. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. The Millennium Edition, New York (2005)

    MATH  Google Scholar 

  13. Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators: News Trends and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (2002)

    Book  MATH  Google Scholar 

  14. Chaira, T., Ray, A.K.: Region extraction using fuzzy similarity measures. J. Fuzzy Math. 11(3), 601–607 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Chaira, T., Ray, A.K.: Fuzzy measures for color image retrieval. Fuzzy Sets Syst. 150, 545–560 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publisher, Dordrecht (1994)

    Book  MATH  Google Scholar 

  17. Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation functions: Means. Inf. Sci. 181(1), 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Julio, A., Pagola, M., Paternain, D., Lopez-Molina, C., Melo-Pinto, P.: Interval-valued restricted equivalence functions applied on clustering techniques. In: IFSA-EUSFLAT, pp. 831–836 (2009)

    Google Scholar 

  19. Klement, E.P., Mesiar, R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier B.V, The Netherlands (2005)

    MATH  Google Scholar 

  20. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  21. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logics: Theory and Applications. Prentice-Halls PTR, Upper Saddle River (2005)

    Google Scholar 

  22. Lopez-Molina, C., De Baets, B., Bustince, H.: Generating fuzzy edge images from gradient magnitudes. Comput. Vis. Image Underst. 115(11), 1571–1580 (2011)

    Article  Google Scholar 

  23. Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)

    Article  Google Scholar 

  24. Palmeira, E.S., Bedregal, B., Bustince, H., De Baets, B., Jurio, A.: Restricted equivalence functions on bounded lattices. Information Sciences (2013, submitted)

    Google Scholar 

  25. Van der Weken, D., Nachtegael, M., Kerre, E.E.: Using similarity measures and homogeneity for the comparison of images. Image Vis. Comput. 22, 695–702 (2004)

    Article  Google Scholar 

  26. Yager, R.R.: On the implication operator in fuzzy logic. Inf. Sci. 31(2), 141–164 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. Palmeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Palmeira, E.S., Bedregal, B. (2018). Restricted Equivalence Function on L([0, 1]). In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds) Fuzzy Logic in Intelligent System Design. NAFIPS 2017. Advances in Intelligent Systems and Computing, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-319-67137-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67137-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67136-9

  • Online ISBN: 978-3-319-67137-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics