Abstract
It is know from the literature that interval-valued equivalence functions are not decomposable. In order to solve that problem and give a characterization for interval-valued restricted equivalence functions by means of aggregating interval fuzzy implication we consider an admissible order on the lattice L([0, 1]). Also, we discuss about some other properties of those operators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A non-empty set P endowed with a partial order \(\leqslant _P\) is called a partial order set or for short a poset.
- 2.
An element e is called an equilibrium point if \(N(e) = e\).
References
Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2008)
Baczyński, M.: Residual implications revised. Notes on the Smets-Magrez theorem. Fuzzy Sets Syst. 145(2), 267–277 (2004)
Baddeley, A.J.: An error metric for images. In: Robust Computer Vision, pp. 59–78. Wichmann, Karlsruhe (1992)
Bedregal, B.: On interval fuzzy negations. Fuzzy Sets Syst. 161, 2290–2313 (2010)
Bedregal, B.C., Beliakov, G., Bustince, H., Fernandez, J., Pradera, A., Reiser, R.: (S,N)-Implications on bounded lattices. In: Baczyński, M., et al. (eds.) Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300, pp. 101–124. Springer, Heidelberg (2013)
Beliakov, G.: Construction of aggregation functions from data using linear programming. Fuzzy Sets Syst. 160(1), 65–75 (2009)
Bustince, H., Barrenechea, E., Pagola, M.: Restricted equivalence functions. Fuzzy Sets Syst. 157, 2333–2346 (2006)
Bustince, H., Barrenechea, E., Pagola, M.: Relationship between restricted dissimilarity functions, restricted equivalence functions and normal \(E_{N}\)-functions: Image thresholding invariant. Pattern Recogn. Lett. 29, 525–536 (2008)
Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets Syst. 134(2), 209–229 (2003)
Bustince, H., Fernadez, J., Mesiar, R., Pradera, A., Beliakov, G.: Restricted dissimilarity functions and penalty functions. In: EUSFLAT-LFA 2011, Aix-les-Bains, France (2011)
Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets and Systems, (2012, submitted)
Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. The Millennium Edition, New York (2005)
Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators: News Trends and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (2002)
Chaira, T., Ray, A.K.: Region extraction using fuzzy similarity measures. J. Fuzzy Math. 11(3), 601–607 (2003)
Chaira, T., Ray, A.K.: Fuzzy measures for color image retrieval. Fuzzy Sets Syst. 150, 545–560 (2005)
Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publisher, Dordrecht (1994)
Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation functions: Means. Inf. Sci. 181(1), 1–22 (2011)
Julio, A., Pagola, M., Paternain, D., Lopez-Molina, C., Melo-Pinto, P.: Interval-valued restricted equivalence functions applied on clustering techniques. In: IFSA-EUSFLAT, pp. 831–836 (2009)
Klement, E.P., Mesiar, R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier B.V, The Netherlands (2005)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logics: Theory and Applications. Prentice-Halls PTR, Upper Saddle River (2005)
Lopez-Molina, C., De Baets, B., Bustince, H.: Generating fuzzy edge images from gradient magnitudes. Comput. Vis. Image Underst. 115(11), 1571–1580 (2011)
Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)
Palmeira, E.S., Bedregal, B., Bustince, H., De Baets, B., Jurio, A.: Restricted equivalence functions on bounded lattices. Information Sciences (2013, submitted)
Van der Weken, D., Nachtegael, M., Kerre, E.E.: Using similarity measures and homogeneity for the comparison of images. Image Vis. Comput. 22, 695–702 (2004)
Yager, R.R.: On the implication operator in fuzzy logic. Inf. Sci. 31(2), 141–164 (1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Palmeira, E.S., Bedregal, B. (2018). Restricted Equivalence Function on L([0, 1]). In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds) Fuzzy Logic in Intelligent System Design. NAFIPS 2017. Advances in Intelligent Systems and Computing, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-319-67137-6_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-67137-6_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67136-9
Online ISBN: 978-3-319-67137-6
eBook Packages: EngineeringEngineering (R0)