Measuring Uncertainty for Interval Belief Structures and its Application for Analyzing Weather Forecasts | SpringerLink
Skip to main content

Measuring Uncertainty for Interval Belief Structures and its Application for Analyzing Weather Forecasts

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

While analyzing statistical data we face with a problem of modeling uncertainty. One among well justified models is based on belief structures that allow us to describe imprecision and conflict in information. We use this model for analyzing contradiction in weather forecasts. For this aim we build several measures of contradiction based on the introduced imprecision index and the disjunctive aggregation rule for interval belief structures. We use these characteristics for analyzing weather forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Smets considers also in [17] interval belief structures, but they are not finitely defined.

References

  1. Bronevich, A.G., Klir, G.J.: Measures of uncertainty for imprecise probabilities: an axiomatic approach. Int. J. Approximate Reasoning 51, 365–390 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bronevich, A.G., Lepskiy, A.E.: Imprecision indices: axiomatic, properties and applications. Int. J. Gen. Syst. 44(7–8), 812–832 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cuzzolin, F.: \(L_p\)-consonant approximations of belief functions. IEEE Trans. Fuzzy Syst. 22, 420–436 (2014)

    Article  Google Scholar 

  4. Daniel, M.: Belief functions: a revision of plausibility conflict and pignistic conflict. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. Lecture Notes in Computer Science, vol. 8078, pp. 190–203. Springer, Heidelberg (2013)

    Google Scholar 

  5. Dubois, D., Prade, H.: A note on measures of specificity for fuzzy sets. Int. J. Gen. Syst. 10(4), 279–283 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. Int. J. Gen. Syst. 12(3), 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  7. Dubois, D., Prade, H.: Consonant approximations of belief functions. Int. J. Approximate Reasoning 4, 419–449 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubois, D., Prade, H.: On the combination of evidence in various mathematical frameworks. In: Flamm, J., Luisi, T. (eds.) Reliability Data Collection and Analysis, pp. 213–241. ECSC, EEC, EAFC, Brussels (1992)

    Chapter  Google Scholar 

  9. Jousselme, A.-L., Maupin, P.: Distances in evidence theory: comprehensive survey and generalizations. Int. J. Approximate Reasoning 5, 118–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kantorovich, L.V.: On mass moving. Dokl. Akad. Nauk USSR 37(7–8), 227–229 (1942)

    Google Scholar 

  11. Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. Wiley-Interscience, Hoboken (2006)

    MATH  Google Scholar 

  12. Lepskiy, A.E.: About relation between the measure of conflict and decreasing of ignorance in theory of evidence. In: Proceedings of 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), pp. 355–362. Atlantis Press, Amsterdam, Beijing, Paris (2013)

    Google Scholar 

  13. Liu, W.: Analysing the degree of conflict among belief functions. Artif. Intell. 170, 909–924 (2006)

    Article  MATH  Google Scholar 

  14. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  15. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  16. Smets, P.: The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 12, 447–458 (1990)

    Article  Google Scholar 

  17. Smets, P.: Belief functions on real numbers. Int. J. Approximate Reasoning 40(3), 181–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey G. Bronevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bronevich, A.G., Spiridenkova, N.S. (2018). Measuring Uncertainty for Interval Belief Structures and its Application for Analyzing Weather Forecasts. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-66830-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66830-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66829-1

  • Online ISBN: 978-3-319-66830-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics