Fuzzy Model Based Predictive Control of Reaction Temperature in a Pilot Plant | SpringerLink
Skip to main content

Fuzzy Model Based Predictive Control of Reaction Temperature in a Pilot Plant

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

A fuzzy model with reduced complexity has been developed to capture the nonlinear dynamics of a pilot plant in which the temperature of a reactor is controlled. The use of Functional Principal Component Analysis provides an ability to reduce the complexity of the model permitting the application of linear MPC for the nonlinear control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Camacho, E., Bordons, C.: Model predictive control. In: Advanced Textbooks in Control and Signal Processing. Springer (2007)

    Google Scholar 

  2. Qin, S., Badgwell, T.: An overview of nonlinear model predictive control applications. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear Model Predictive Control. Progress in Systems and Control Theory, Birkhäuser Basel, vol. 26, pp. 369–392 (2000). http://dx.doi.org/10.1007/978-3-0348-8407-5_21

  3. Potocnik, B., Music, G., Zupancic, B.: Model predictive control systems with discrete inputs. In: Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference. Melecon 2004, vol. 1, pp. 383–386, May 2004

    Google Scholar 

  4. Karer, G., Mušič, G., Škrjanc, I., Zupančič, B.: Hybrid fuzzy model-based predictive control of temperature in a batch reactor. Comput. Chem. Eng. 31(12), 1552–1564 (2007). http://www.sciencedirect.com/science/article/pii/S0098135407000051

    Article  MATH  Google Scholar 

  5. Núñez, A., Sáez, D., Oblak, S., Škrjanc, I.: Fuzzy-model-based hybrid predictive control. ISA Trans. 48(1), 24–31 (2009). http://www.sciencedirect.com/science/article/pii/S0019057808000682

    Article  Google Scholar 

  6. Babuska, R., Sousa, J., Verbruggen, H.: Predictive control of nonlinear systems based on fuzzy and neural models. In: European Control Conference, p. 667 (1999)

    Google Scholar 

  7. Marusak, P., Tatjewski, P.: Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers. Arch. Control Sci. 12(3), 267–288 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Tatjewski, P.: Advanced control of industrial processes: structures and algorithms. In: Advances In Industrial Control. Springer (2007)

    Google Scholar 

  9. Huang, Y.L., Lou, H.H., Gong, J.P., Edgar, T.F.: Fuzzy model predictive control. IEEE Trans. Fuzzy Syst. 8(6), 665–678 (2000)

    Article  Google Scholar 

  10. Mahalanabis, A.K.: Large scale systems modelling and control, m. jamshidi, north holland, 1983. no. of pages: 524. price: 34.10. Optimal Control Applications and Methods 5(4), 367–367 (1984). doi:10.1002/oca.4660050410

    Article  Google Scholar 

  11. Escaño. J., Bordons, C.: Neurofuzzy model of an industrial processs, reducing complexity by using principal component analysis. In: XVI Congreso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF 2012) (2012)

    Google Scholar 

  12. Gruber, J., Bordons, C., Bars, R., Haber, R.: Nonlinear predictive control of smooth nonlinear systems based on volterra models. application to a pilot plant. Int. J. Robust Nonlinear Control 20(16), 1817–1835 (2010). doi:10.1002/rnc.1549

    MathSciNet  MATH  Google Scholar 

  13. Ramírez, D., Gruber, J., Álamo, T., Bordóns, C., Camacho, E.: Control predictivo mín-máx de una planta piloto. Revista Iberoamericana de Automática e Informática Industrial RIAI 5(3), 37–47 (2008). http://www.sciencedirect.com/science/article/pii/S1697791208701602

    Article  Google Scholar 

  14. Chiu, S.: Fuzzy Model Identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267–278 (1994)

    Article  Google Scholar 

  15. Fuzzy Logic Toolbox User’s Guide. COPYRIGHT 1995–2017 by The MathWorks, Inc. Revised for Version 2.2.25 (Release 2017a) (March 2017). https://www.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf

  16. Jang, J.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  17. Escaño, J., Bordons, C.: Complexity reduction in fuzzy systems using functional principal component analysis. In: Matía, F., Marichal, G.N., Jiménez, E. (eds.) Fuzzy Modeling and Control: Theory and Applications. Atlantis Computational Intelligence Systems, Atlantis Press, vol. 9, pp. 49–65 (2014). http://dx.doi.org/10.2991/978-94-6239-082-9_3

  18. Deville, J.: Méthodes statistiques et numériques de l’analyse harmonique. Annales de l’inséé. 15, 3, 5–101 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Escaño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Escaño, J.M., Witheephanich, K., Bordons, C. (2018). Fuzzy Model Based Predictive Control of Reaction Temperature in a Pilot Plant. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-319-66824-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66824-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66823-9

  • Online ISBN: 978-3-319-66824-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics