Abstract
Optimizing the layout of the equipment and connecting pipes that form a chemical plant is an important problem, where the aim is to minimize the total cost of the plant while ensuring its safety and correct operation. The complexity of this problem is such that it is still solved manually, taking multiple engineers several years to complete. Most research in this area focuses on the simpler subproblem of placing the equipment, while the approaches that take pipe routing into account are either based on heuristics or do not consider sufficiently realistic scenarios. Our work presents a new model of the pipe routing subproblem that integrates realistic requirements, such as flexibility constraints, and aims for optimality while solving the largest problem instance considered in the literature. The model is being developed in collaboration with Woodside Energy Ltd. for their Liquefied Natural Gas plants, and is implemented in the high-level modeling language MiniZinc. The use of MiniZinc has both reduced the amount of time required to develop the model, and allowed us to easily experiment with different solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue: past, present and future. Constraints 12(1), 21–62 (2007)
Belov, G., Stuckey, P.J., Tack, G., Wallace, M.: Improved linearization of constraint programming models. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 49–65. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_4
Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed – a lazy clause solver (2017). https://github.com/chuffed/chuffed. Accessed 23 Mar 2017
Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis (2011)
M.W. Kellogg Company: Design of Piping Systems. Wiley series in Chemical Engineering. Wiley, Hoboken (1956)
de Berg, M., van Kreveld, M., Nilsson, B.J., Overmars, M.: Shortest path queries in rectilinear worlds. Int. J. Comput. Geom. Appl. 02(03), 287–309 (1992)
Furuholmen, M., Glette, K., Hovin, M., Torresen, J.: Evolutionary approaches to the three-dimensional multi-pipe routing problem: a comparative study using direct encodings. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 71–82. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12139-5_7
Google: Google optimization tools (2017). https://developers.google.com/optimization/
Guirardello, R., Swaney, R.E.: Optimization of process plant layout with pipe routing. Comput. Chem. Eng. 30(1), 99–114 (2005)
Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual Version 7.0. Houston. Gurobi Optimization, Texas (2016)
IBM: IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual (2017)
Jiang, W.-Y., Lin, Y., Chen, M., Yu, Y.-Y.: A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design. Ocean Eng. 102, 63–70 (2015)
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_38
Padberg, M.: Packing small boxes into a big box. Math. Methods Oper. Res. 52(1), 1–21 (2000)
Sakti, A., Zeidner, L., Hadzic, T., Rock, B.S., Quartarone, G.: Constraint programming approach for spatial packaging problem. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 319–328. Springer, Cham (2016). doi:10.1007/978-3-319-33954-2_23
Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode (2017). www.gecode.org
Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_4
Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Constraints 15(3), 307–316 (2010)
Xu, G., Papageorgiou, L.G.: A construction-based approach to process plant layout using mixed-integer optimization. Ind. Eng. Chem. Res. 46(1), 351–358 (2007)
Xu, G., Papageorgiou, L.G.: Process plant layout using an improvement-type algorithm. Chem. Eng. Res. Des. 87(6), 780–788 (2009)
Zhu, D., Latombe, J.C.: Pipe routing-path planning (with many constraints). In: Proceedings of 1991 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1940–1947 (1991)
Acknowledgments
This research was funded by Woodside Energy Ltd. We thank all our Woodside collaborators, particularly Solomon Faka, for the many useful discussions, as well as for the enlightening visit to their LNG plant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Belov, G., Czauderna, T., Dzaferovic, A., Garcia de la Banda, M., Wybrow, M., Wallace, M. (2017). An Optimization Model for 3D Pipe Routing with Flexibility Constraints. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-66158-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66157-5
Online ISBN: 978-3-319-66158-2
eBook Packages: Computer ScienceComputer Science (R0)