Abstract
Calibration is important to service robot, but the process of calibration is time consuming and laborious. With the popularity of service robot, an automatic and universal calibration system is urgent to be developed, therefore we propose a general batch-calibration framework, Motion Capture System is adopt as an external measurement device in virtual of it can provide realtime, accurate movement data of measured objects. We will show that the system is effective and promising with a case study of odometry calibration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antonelli, G., Chiaverini, S., Fusco, G.: A calibration method for odometry of mobile robots based on the least-squares technique: theory and experimental validation. IEEE Trans. Rob. 21(5), 994–1004 (2005)
Bai, A., Wu, F., Chen, X.: Towards a principled solution to simulated robot soccer. In: Chen, X., Stone, P., Sucar, L.E., Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 141–153. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39250-4_14
Bai, A., Wu, F., Chen, X.: Bayesian mixture modelling and inference based thompson sampling in monte-carlo tree search. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), pp. 1646–1654. Lake Tahoe, United States (2013)
Bai, A., Wu, F., Chen, X.: Online planning for large markov decision processes with hierarchical decomposition. ACM Trans. Intell. Syst. Technol. (ACM TIST) 6(4), 45 (2015)
Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Rob. Autom. 12(6), 869–880 (1996)
Borm, J.H., Meng, C.H.: Determination of optimal measurement configurations for robot calibration based on observability measure. Int. J. Rob. Res. 10(1), 51–63 (1991)
Carrillo, H., Birbach, O., Taubig, H., Bauml, B., Frese, U., Castellanos, J., et al.: On task-oriented criteria for configurations selection in robot calibration. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3653–3659. IEEE (2013)
Censi, A., Franchi, A., Marchionni, L., Oriolo, G.: Simultaneous calibration of odometry and sensor parameters for mobile robots. IEEE Trans. Rob. 29(2), 475–492 (2013)
Chen, H., Fuhlbrigge, T., Choi, S., Wang, J., Li, X.: Practical industrial robot zero offset calibration. In: 2008 IEEE International Conference on Automation Science and Engineering, CASE 2008, pp. 516–521. IEEE (2008)
Chen, S., Wu, F., Shen, L., Chen, J., Ramchurn, S.D.: Decentralized patrolling under constraints in dynamic environments. IEEE Trans. Cybern. 1–13 (2015)
Chen, Y., Wu, F., Shuai, W., Wang, N., Chen, R., Chen, X.: Kejia robot - an attractive shopping mall guider. In: Proceedings of the 7th International Conference on Social Robotics, pp. 145–154 (2015)
Chen, Y., Wu, F., Wang, N., Tang, K., Cheng, M., Chen, X.: KeJia-LC: a low-cost mobile robot platform — champion of demo challenge on benchmarking service robots at RoboCup 2015. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS, vol. 9513, pp. 60–71. Springer, Cham (2015). doi:10.1007/978-3-319-29339-4_5
Cheng, M., Chen, X., Tang, K., Wu, F., Kupcsik, A., Iocchi, L., Chen, Y., Hsu, D.: Synthetical benchmarking of service robots: a first effort on domestic mobile platforms. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 377–388. Springer, Cham (2015). doi:10.1007/978-3-319-29339-4_32
Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. J. Rob. Res. 18(3), 286–298 (1999)
Elatta, A., Gen, L.P., Zhi, F.L., Daoyuan, Y., Fei, L.: An overview of robot calibration. Inf. Technol. J. 3(1), 74–78 (2004)
Hollerbach, J.M., Wampler, C.W.: The calibration index and taxonomy for robot kinematic calibration methods. Int. J. Rob. Res. 15(6), 573–591 (1996)
Lu, D., Zhou, Y., Wu, F., Zhang, Z., Chen, X.: Integrating answer set programming with semantic dictionaries for robot task planning. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (2017)
Maier, D., Wrobel, S., Bennewitz, M.: Whole-body self-calibration via graph-optimization and automatic configuration selection. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5662–5668. IEEE (2015)
Meeussen, W., Hsu, J., Diankov, R.: Urdf-unified robot description format (2012)
Omodei, A., Legnani, G., Adamini, R.: Three methodologies for the calibration of industrial manipulators: experimental results on a scara robot. J. Rob. Syst. 17(6), 291–307 (2000)
Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators (1981)
Roth, Z., Mooring, B., Ravani, B.: An overview of robot calibration. IEEE J. Rob. Autom. 5(3), 377–385 (1987)
Roy, N., Thrun, S.: Online self-calibration for mobile robots. In: 1999 Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2292–2297. IEEE (1999)
Shah, M., Eastman, R.D., Hong, T.: An overview of robot-sensor calibration methods for evaluation of perception systems. In: Proceedings of the Workshop on Performance Metrics for Intelligent Systems, pp. 15–20. ACM (2012)
Shiu, Y.C., Ahmad, S.: Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form ax = xb. IEEE Trans. Rob. Autom. 5(1), 16–29 (1989)
Strobl, K.H., Hirzinger, G.: Optimal hand-eye calibration. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4647–4653. IEEE (2006)
Whitney, D., Lozinski, C., Rourke, J.M.: Industrial robot forward calibration method and results. J. Dyn. Syst. Meas. Contr. 108(1), 1–8 (1986)
Wu, F., Ramchurn, S., Chen, X.: Coordinating human-UAV teams in disaster response. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), pp. 524–530 (2016)
Zhang, H., Cao, R., Zilberstein, S., Wu, F., Chen, X.: Toward effective soft robot control via reinforcement learning. In: Proceedings of the 10th International Conference on Intelligent Robotics Applications (2017)
Acknowledgments
This work was supported in part by National Natural Science Foundation of China under grant No. 61603368, the Youth Innovation Promotion Association of CAS (No. 2015373), and Natural Science Foundation of Anhui Province under grant No. 1608085QF134.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zheng, K., Chen, Y., Wu, F., Chen, X. (2017). A General Batch-Calibration Framework of Service Robots. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-65298-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65297-9
Online ISBN: 978-3-319-65298-6
eBook Packages: Computer ScienceComputer Science (R0)