A General Batch-Calibration Framework of Service Robots | SpringerLink
Skip to main content

A General Batch-Calibration Framework of Service Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Included in the following conference series:

  • 5156 Accesses

Abstract

Calibration is important to service robot, but the process of calibration is time consuming and laborious. With the popularity of service robot, an automatic and universal calibration system is urgent to be developed, therefore we propose a general batch-calibration framework, Motion Capture System is adopt as an external measurement device in virtual of it can provide realtime, accurate movement data of measured objects. We will show that the system is effective and promising with a case study of odometry calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonelli, G., Chiaverini, S., Fusco, G.: A calibration method for odometry of mobile robots based on the least-squares technique: theory and experimental validation. IEEE Trans. Rob. 21(5), 994–1004 (2005)

    Article  Google Scholar 

  2. Bai, A., Wu, F., Chen, X.: Towards a principled solution to simulated robot soccer. In: Chen, X., Stone, P., Sucar, L.E., Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 141–153. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39250-4_14

    Chapter  Google Scholar 

  3. Bai, A., Wu, F., Chen, X.: Bayesian mixture modelling and inference based thompson sampling in monte-carlo tree search. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), pp. 1646–1654. Lake Tahoe, United States (2013)

    Google Scholar 

  4. Bai, A., Wu, F., Chen, X.: Online planning for large markov decision processes with hierarchical decomposition. ACM Trans. Intell. Syst. Technol. (ACM TIST) 6(4), 45 (2015)

    Google Scholar 

  5. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Rob. Autom. 12(6), 869–880 (1996)

    Article  Google Scholar 

  6. Borm, J.H., Meng, C.H.: Determination of optimal measurement configurations for robot calibration based on observability measure. Int. J. Rob. Res. 10(1), 51–63 (1991)

    Article  Google Scholar 

  7. Carrillo, H., Birbach, O., Taubig, H., Bauml, B., Frese, U., Castellanos, J., et al.: On task-oriented criteria for configurations selection in robot calibration. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3653–3659. IEEE (2013)

    Google Scholar 

  8. Censi, A., Franchi, A., Marchionni, L., Oriolo, G.: Simultaneous calibration of odometry and sensor parameters for mobile robots. IEEE Trans. Rob. 29(2), 475–492 (2013)

    Article  Google Scholar 

  9. Chen, H., Fuhlbrigge, T., Choi, S., Wang, J., Li, X.: Practical industrial robot zero offset calibration. In: 2008 IEEE International Conference on Automation Science and Engineering, CASE 2008, pp. 516–521. IEEE (2008)

    Google Scholar 

  10. Chen, S., Wu, F., Shen, L., Chen, J., Ramchurn, S.D.: Decentralized patrolling under constraints in dynamic environments. IEEE Trans. Cybern. 1–13 (2015)

    Google Scholar 

  11. Chen, Y., Wu, F., Shuai, W., Wang, N., Chen, R., Chen, X.: Kejia robot - an attractive shopping mall guider. In: Proceedings of the 7th International Conference on Social Robotics, pp. 145–154 (2015)

    Google Scholar 

  12. Chen, Y., Wu, F., Wang, N., Tang, K., Cheng, M., Chen, X.: KeJia-LC: a low-cost mobile robot platform — champion of demo challenge on benchmarking service robots at RoboCup 2015. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS, vol. 9513, pp. 60–71. Springer, Cham (2015). doi:10.1007/978-3-319-29339-4_5

    Chapter  Google Scholar 

  13. Cheng, M., Chen, X., Tang, K., Wu, F., Kupcsik, A., Iocchi, L., Chen, Y., Hsu, D.: Synthetical benchmarking of service robots: a first effort on domestic mobile platforms. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 377–388. Springer, Cham (2015). doi:10.1007/978-3-319-29339-4_32

    Chapter  Google Scholar 

  14. Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. J. Rob. Res. 18(3), 286–298 (1999)

    Article  Google Scholar 

  15. Elatta, A., Gen, L.P., Zhi, F.L., Daoyuan, Y., Fei, L.: An overview of robot calibration. Inf. Technol. J. 3(1), 74–78 (2004)

    Article  Google Scholar 

  16. Hollerbach, J.M., Wampler, C.W.: The calibration index and taxonomy for robot kinematic calibration methods. Int. J. Rob. Res. 15(6), 573–591 (1996)

    Article  Google Scholar 

  17. Lu, D., Zhou, Y., Wu, F., Zhang, Z., Chen, X.: Integrating answer set programming with semantic dictionaries for robot task planning. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (2017)

    Google Scholar 

  18. Maier, D., Wrobel, S., Bennewitz, M.: Whole-body self-calibration via graph-optimization and automatic configuration selection. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5662–5668. IEEE (2015)

    Google Scholar 

  19. Meeussen, W., Hsu, J., Diankov, R.: Urdf-unified robot description format (2012)

    Google Scholar 

  20. Omodei, A., Legnani, G., Adamini, R.: Three methodologies for the calibration of industrial manipulators: experimental results on a scara robot. J. Rob. Syst. 17(6), 291–307 (2000)

    Article  MATH  Google Scholar 

  21. Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators (1981)

    Google Scholar 

  22. Roth, Z., Mooring, B., Ravani, B.: An overview of robot calibration. IEEE J. Rob. Autom. 5(3), 377–385 (1987)

    Article  Google Scholar 

  23. Roy, N., Thrun, S.: Online self-calibration for mobile robots. In: 1999 Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2292–2297. IEEE (1999)

    Google Scholar 

  24. Shah, M., Eastman, R.D., Hong, T.: An overview of robot-sensor calibration methods for evaluation of perception systems. In: Proceedings of the Workshop on Performance Metrics for Intelligent Systems, pp. 15–20. ACM (2012)

    Google Scholar 

  25. Shiu, Y.C., Ahmad, S.: Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form ax = xb. IEEE Trans. Rob. Autom. 5(1), 16–29 (1989)

    Article  Google Scholar 

  26. Strobl, K.H., Hirzinger, G.: Optimal hand-eye calibration. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4647–4653. IEEE (2006)

    Google Scholar 

  27. Whitney, D., Lozinski, C., Rourke, J.M.: Industrial robot forward calibration method and results. J. Dyn. Syst. Meas. Contr. 108(1), 1–8 (1986)

    Article  MATH  Google Scholar 

  28. Wu, F., Ramchurn, S., Chen, X.: Coordinating human-UAV teams in disaster response. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), pp. 524–530 (2016)

    Google Scholar 

  29. Zhang, H., Cao, R., Zilberstein, S., Wu, F., Chen, X.: Toward effective soft robot control via reinforcement learning. In: Proceedings of the 10th International Conference on Intelligent Robotics Applications (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China under grant No. 61603368, the Youth Innovation Promotion Association of CAS (No. 2015373), and Natural Science Foundation of Anhui Province under grant No. 1608085QF134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zheng, K., Chen, Y., Wu, F., Chen, X. (2017). A General Batch-Calibration Framework of Service Robots. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics