Abstract
Many researches have studied indoor localization techniques in past decades. Depending on a wireless sensor network, current distance-based localization techniques exploit different measurements of Received Signal Strength (RSS) values between RF devices. It is simple to implement and costly efficient, while the estimation accuracy is significantly reduced in indoor environments. In this paper, we focus on localization methods in real indoor environments using IEEE 802.15.4 standard Zigbee network. The objective is to mitigate the instability and divergence of signal strength by using successional RSS evaluations with Kalman filtering and avoid multiple NLOS interferences by using LOS node set identification procedure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Faragher, R., Harle, R.: Location fingerprinting with bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015). doi:10.1109/JSAC.2015.2430281
Yang, Z., Wu, C., Liu, Y.: Locating in fingerprint space: wireless indoor localization with little human intervention. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. ACM (2012). ISBN: 978-1-4503-1159-5
Lin, K., et al.: Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Trans. Autom. Sci. Eng. 13(3), 1294–1307 (2016). doi:10.1109/TASE.2016.2543242
Luo, X., OBrien, W.J., Julien, C.L.: Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites. Adv. Eng. Inf. 25(2), 355–363 (2011). http://doi.org/10.1016/j.aei.2010.09.003
Rapinski, J., Cellmer, S.: Analysis of range based indoor positioning techniques for personal communication networks. Mob. Netw. Appl. 21(3), 539–549 (2016). doi:10.1007/s11036-015-0646-8
Sklar, B.: Digital Communications, vol. 2. Prentice Hall, Upper Saddle River (2001)
Wang, J., et al.: Robust device-free wireless localization based on differential RSS measurements. IEEE Trans. Ind. Electron. 60(12), 5943–5952 (2013). doi:10.1109/TIE.2012.2228145
Seidel, S.Y., et al.: Path loss, scattering and multipath delay statistics in four European cities for digital cellular and microcellular radiotelephone. IEEE Trans. Veh. Technol. 40(4), 721–730 (1991). doi:10.1109/25.108383
Faragher, R.: Understanding the basis of the Kalman filter via a simple and intuitive derivation [lecture notes]. IEEE Sign. Process. Mag. 29(5), 128–132 (2012). doi:10.1109/MSP.2012.2203621
Bekkali, A., Sanson, H., Matsumoto, M.: RFID indoor positioning based on probabilistic RFID map and Kalman filtering. In: Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WiMOB 2007. IEEE (2007). doi:10.1109/WIMOB.2007.4390815
Savvides, A., Han, C.-C., Strivastava, M.B.: Dynamic fine-grained localization in ad-hoc networks of sensors. In: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking. ACM (2001). doi:10.1145/381677.381693
Ficco, M., Esposito, C., Napolitano, A.: Calibrating indoor positioning systems with low efforts. IEEE Trans. Mob. Comput. 13(4), 737–751 (2014). doi:10.1109/TMC.2013.29
Simon, D.: Optimal State Estimation Kalman, H Infinity, and Nonlinear Approaches. John Wiley and Sons, New York (2006)
Maxfor, MTM-CM3300MSP User Manual, Maxfor technology Inc. (2006). http://tip.maxfor.co.kr/data/MTM-CM3300MSP20Manual.pdf
Texas Inst., 2.4 GHz IEEE 802.15. 4 ZigBee-ready RF Transceiver Datasheet, CC2420, Chipcon products from Texas Instruments (2006)
Acknowledgement
This research was supported by Basic Science Research Pro-gram through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A2B1015032).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kwon, K., Kwon, Y. (2017). Mobile Indoor Localization Mitigating Unstable RSS Variations and Multiple NLOS Interferences. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-65298-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65297-9
Online ISBN: 978-3-319-65298-6
eBook Packages: Computer ScienceComputer Science (R0)